A general procedure to synthesize highly crystalline metal oxide and mixed oxide nanocrystals in aqueous medium and photocatalytic activity of metal/oxide nanohybrids†

Thanh-Dinh Nguyen, Cao-Thang Dinh and Trong-On Do*

Received 27th January 2011, Accepted 1st February 2011
DOI: 10.1039/c1nr10109a

A conventional and general route has been exploited to the high yield synthesis of many kinds of highly crystalline metal oxide and mixed oxide nanocrystals with different morphologies including belt, rod, truncated-octahedron, cubic, sphere, sheet via the hydrothermal reaction of inorganic precursors in aqueous solution in the presence of bifunctional 6-aminohexanoic acid (AHA) molecules as a capping agent. This method is a simple, reproducible and general route for the preparation of a variety of high-crystalline inorganic nanocrystals in scale-up. The shape of inorganic nanocrystals such as CoWO₄, La₂(MoO₄)₃ can be controlled by simply adjusting the synthesis conditions including pH solution and reaction temperature. Further, by tuning precursor monomer concentration, the mesocrystal hierarchical aggregated microspheres (e.g., MnWO₄, La₂(MoO₄)₃) can be achieved, due to the spontaneous assembly of individual AHA-capped nanoparticles. These obtained AHA-capped nanocrystals are excellent supports for the synthesis of a variety of hybrid metal/oxide nanocrystals in which noble metal particles are uniformly deposited on the surface of each individual nanosupport. The photocatalytic activity of Ag/TiO₂ nanobelts as a typical hybrid photocatalyst sample for Methylene Blue degradation was also studied.

1. Introduction

Metal oxide, mixed oxide, and hybrid noble-metal/oxide nanocrystals (NCs) have great potential for electronic, magnetic, optical, and photocatalytic applications. Mixed oxide system composed of two or more different components has attracted particular interest because their unique properties are not usually attainable in single components. Metals highly dispersed on nanosupport surfaces show active catalysts for a variety of reactions. The origins of their high catalytic activity have been proposed to originate from one or more of three contributions: (i) presence of low coordinative metal sites; (ii) charge transfer between the support and the metal; (iii) quantum size effect. For example, the metal–semiconductor (TiO₂) interface can promote effective charge carrier transfers to favor charge separation under band gap excitation and subsequently high photo-catalytic performance. Noble metals deposited on the NC surface act as sinks for transferring the photoexcited electron from semiconductor surface to reagents to perform the oxidation. Therefore, the charge distribution between semiconductor and metal plays an important role in the photocatalytic process. Even though a large number of studies have been reported in the literature, the key factors for improved performance in metal/oxide nanocomposites are yet to be fully understood. Thus, the development of a general approach for the fabrication of a variety of new types of metal/oxide nanohybrids is a great challenge.

Numerous methods have been documented in the recent reviews for the synthesis of a broad range of metal oxide and mixed oxide NCs. For example, Li et al. reported a new route for the synthesis of different types of nanocrystals including magnetic/dielectric, semiconducting, rare earth fluorescent nanoparticles, which is based on a phase transfer and separation mechanism at the liquid–liquid interface, through the liquid–solid–solution process. Ying et al. reported a protocol to transfer metal ions from an aqueous solution to an organic medium and their application in the synthesis of nanocrystals in organic solvent. Recently, our group reported the general two-phase routes for the synthesis of two classes of monodisperse metal oxide nanocrystals: rare earth oxides and transition metal oxides, using metal salts as starting precursors instead of expensive organometallic compounds. With the same synthetic protocol, we have successfully synthesized multicompartment nanocrystals with controlled size and shape, such as doughnut- and sphere-shaped LaCO₃OH nanocrystals and cerium doped LaCO₃OH. The shape-controlled vanadium oxide and rare metal oxides.
earth orthovanadate nanocrystals using pre-prepared metal-ligand complexes were also obtained via a surfactant-mediated solvothermal process. It is well-known that the morphology of target nanocrystals can be controlled by capping agents through kinetic and thermodynamic regulations of nuclei growth. Using conventional surfactants, such as fatty acids, aliphatic amines, alkyl thiols, alkyl phosphine oxides, the resulting surfactant-capped NC products are usually hydrophobic and separated in water solution. This may not be compatible for practical applications as compared to hydrophilic ones, in which water is used as reaction medium. Recently, amphiphilic amino acid biomolecules have received great attention to synthesize the water-dispersible nanocrystals in aqueous medium. The formed products can be compatible for biotechnology, due to their hydrophilic surface character. For example, Xu et al. synthesized the amino acid-capped Au nanochains by reducing aqueous AuCl₄⁻ with NaBH₄ in the presence of the amino acid (glutamic acid and histidine) as a capping agent. The interaction between hydrophilic-surfaced groups (–COOH and –NH₂) could result in the oriented-attachment formation for the growth of Au nanochains from 10 to 15 nm nanospheres. Peptide-capped gold nanospheres with ~10 nm in diameter were recently synthesized by Aizawa et al. Several approaches for the controllable synthesis of titania nanocrystals and erbia micro-/nanostructures in water/ethanol media have been developed by our research group. Very recently, we used bifunctional 6-aminohexanoic acid as a capping agent to the controlled shape of MnWO₄ nanoparticles and their self-assembled microspheres in water medium. For this purpose, we extend this protocol for the synthesis of a variety of highly crystalline metal oxide and mixed oxide nanocrystals with various morphologies and high yield.

On the other hand, heterogeneous photocatalysis is an economically alternative and environmentally safe technology of advanced oxidation processes for removal of organic contaminants and bacterial detoxification from water. Photocatalytic nanoscale systems used to date were based mostly on noble metal-deposited oxide semiconductor hybrid nanocrystals and were usually operational under UV illumination. Due to large band-gap oxide semiconductors such as titania and transition metal tungstate, metal islands deposited on the support structures serve to promote charge separation and also exhibit charge retention. Moreover, the precise control of metal cluster size, well dispersion, and composition of metal deposited on support is deemed as an essential and powerful knob to turn their band gaps, which determine the photocatalytic characteristic of this system. Especially, as the sizes of Au particles fall about 3 nm, the composites display exceptional catalytic behavior. Two main routes have typically been used for the growth of such oxide hybrids. The first route employed light-induced growth of the metal onto the pre-synthesized oxide nanocrystals, as recently illustrated by our group. This synthetic method allows us not only to control the population of uniform metal clusters on each individual TiO₂ surface but also to control their particle size. The resulting hybrid materials exhibit much higher catalytic performance compared to that of commercial catalysts. The second route is via the reduced solution reaction of metal salt on the oxide nanocrystals. Available examples by these two processes include Au@CdS nanorods and Ag@Pt nanorods.

In this article, we report a convenient and general route for the aqueous-phase synthesis of highly crystalline metal oxide and mixed oxide nanoparticles via bifunctional surfactant-assisted hydrothermal process. The synthesis is based on the crystallization of inorganic precursors in water medium in the presence of 6-aminohexanoic acid. The role of 6-aminohexanoic acid biomolecule is as a chelating agent to control the morphology and to stabilize the formed nanocrystals in water medium because of their hydrophilic surface. The deposition of small noble-metal on the oxide nanocrystals was performed in water medium using metal salt and NaBH₄ as metal source and reducing agent, respectively. The optical property and photocatalytic activity of the representative metal nanodots/semiconductor oxide (Ag/TiO₂) hybrid nanocrystals were studied.

2. Experimental section

Chemicals

All chemicals were used as received without further purification. Indium nitrate hydrate (In(NO₃)₃·3H₂O, 99.99%), anhydrous zirconium(iv) chloride (ZrCl₄, 99.99%), commercial titanium oxide powder (TiO₂, 99.8%), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, 98%), manganese nitrate tetrahydrate (Mn(NO₃)₂·4H₂O, 99%), zincate nitrate hexahydrate (Zn(NO₃)₂·6H₂O, 99.9%), cadmium nitrate hexahydrate (Cd(NO₃)₂·6H₂O, 99.9%), lanthanum nitrate hexahydrate (La(NO₃)₃·6H₂O, 99.9%), neodymium nitrate hexahydrate (Nd(NO₃)₃·6H₂O, 99.9%), yttrium nitrate hexahydrate (Y(NO₃)₃·6H₂O, 99.9%), cerium nitrate hexahydrate (Ce(NO₃)₃·6H₂O, 99.9%), samarium nitrate hexahydrate (Sm(NO₃)₃·6H₂O, 99.9%), gadolinium nitrate hexahydrate (Gd(NO₃)₃·6H₂O, 99.9%), erbium nitrate hydrate (Er(NO₃)₃·3H₂O, 99.9%), sodium tungstate dihydrate (Na₂WO₄·2H₂O, 99.9%), vanadium pentoxide (V₂O₅, 99.6%), silver nitrate (AgNO₃), chlorauric acid (HAuCl₄·3H₂O), 6-aminohexanoic acid (HOOC–CH₂–CH₂–CH₂–CH₂–CH₂–NH₂, or AHA, tech. grade, 70%), sodium borohydride (NaBH₄) were purchased from Sigma-Aldrich. Sodium hydroxide and anhydrous ethanol were purchased from Reagent ACS.

Synthesis of metal oxide NCs (In₂O₃, Y₂O₃, ZrO₂, TiO₂, CeO₂)

Metal oxide NCs were prepared by a standard alkali hydrothermal treatment process. In a typical synthesis, 0.03 mol of each inorganic precursor (In(NO₃)₃, Y(NO₃)₃, ZrCl₄, commercial TiO₂ powder, Ce(NO₃)₃) was poured to 6-aminohexanoic acid aqueous solution (10 mL, 1.5 M) under stirring and then a NaOH solution (15 M, 20 mL) was poured. The pH value of the initial solution was ~12. The resulting reaction mixture (30 mL) was transferred to a 50 mL Teflon-lined stainless steel autoclave and treated to 180 °C for 20 h, and subsequently to cool naturally to room temperature. The obtained products were filtered out and washed by distilled water for several times to remove impurities, and dried at 60 °C for 2 h.

Synthesis of mixed metal oxide NCs (tungstate, vanadate, molybdate)

(i) Vanadate and molybdate precursors were prepared from bulk V₂O₅ and bulk MoO₃ powders, respectively. Typically, bulk
Synthesis of metal (Ag, Au)/oxide hybrid NCs

AgNO₃ or HAuCl₄ aqueous solution (5 mL, 3.82–11.45 mM) was injected into 5 mL of an aqueous oxide suspension (0.2 g for each of the pre-synthesized CeO₂, TiO₂, In₂O₃, Y₂O₃, CoWO₄, MnWO₄, La₂(MoO₄)₃ NC powders) under stirring. Ag or Au ion precursors were adsorbed on the hydrophobic surface of oxide semiconductor nanocrystals and were then reduced to zerovalent metal particles by injecting 10 mL of 0.019 M NaBH₄ aqueous solution. The pH value of the reaction solution was ~7. The whole loading amount of metal in synthesis solution was changed from 5.0 to 15.0 weight percent. The reaction mixture (20 mL) was then stirred vigorously and placed in a 30 °C water bath. Within 4 h, the color of the reaction solution changed to gray for Ag and to light pink for Au, indicating the formation of the deposited metallic Ag and Au particles, respectively. A precipitated powder was collected and washed by distilled water for several times to remove impurities. The sample was further dried at 60 °C for 2 h.

Characterization

X-ray diffraction (XRD) patterns were recorded on a Bruker SMART APEXII X-ray diffractometer, using Cu Kα radiation (λ = 1.5418 Å). Scanning electron microscope (SEM) images of products were obtained from a JEOL 6360 instrument working at 3 kV. Transmission electron microscope (TEM) images and selected area electron diffraction (SAED) of the samples were obtained on a JEOL JEM 1230 operated at 120 kV. Samples were prepared by placing a drop of a dilute anhydrous ethanol dispersion of crystals onto a 200 mesh carbon-coated copper grid and immediately evaporated at ambient temperature. XPS measurements were carried out in an ion-pumped chamber (evacuated to 10⁻⁹ Torr) of a photoelectron spectrometer (Kratos Axis-Ultra) equipped with a focused X-ray source (Al Kα, hν = 1486.6 eV). The binding energy of the samples was calibrated by setting the C 1 s peak to 285 eV. The peaks were deconvoluted by means of a standard CasaXPS software (v.2.3.13; product of CasaXPS Software Ltd., USA) to resolve the separate constituents after background subtraction.

UV-visible spectra of the nanohybrids were recorded for the powder sample on a Cary 300 Bio UV-visible spectrophotometer using MgO as reference.

Photocatalytic activities of the samples were evaluated by the photocatalytic decolorization of Methylene Blue (MB) under UV-visible irradiation using a 100 W Hg lamp. In each experiment, 0.015 g of catalyst was added to 16 mL of MB solution (0.03 mM). Before illumination, the suspension was magnetically stirred in the dark for 30 min to ensure the establishment of an adsorption–desorption equilibrium between the catalyst and MB. The solution was then exposed to UV-visible light irradiation under magnetic stirring. At given time intervals (80 min), 16 mL of suspension was sampled and centrifuged to remove the photocatalyst particles. The UV-vis adsorption spectrum of the centrifuged solution was then recorded using a Cary 300 Bio UV-visible spectrophotometer. The photocatalytic activity of TiO₂ samples was calculated from the absorbance peak area [ln(4)]. Nearly exact (R² = 1) logarithmic linearity was found between the MB absorbance and the UV exposure time.

3. Results and discussion

The synthetic conditions, crystalline phases, and morphologies of a variety of metal oxide and mixed metal oxide nanocrystals are summarized in Table 1. The metal oxide and metal mixed oxide nanocrystals (NCs) were formed from the hydrothermal crystallization in an aqueous solution containing inorganic precursor and 6-aminohexanoic acid (AHA) at 180 °C for 20 h. These obtained nanocrystals were capped by –NH₂ heads of bifunctional AHA molecules and free –COOH groups of other end of AHA molecules were available for further derivatization in polar solvent. Furthermore, noble metal highly dispersed on the oxide NC surface was also prepared via the controllable deposition of noble-metal precursors on the hydrophilic surface of these oxide NCs. The role of capping 6-aminohexanoic acid is to capture metal ion by its interaction with –COOH group, which favors for the formation of highly dispersed metal on the oxide surface during the synthesis. This synthetic procedure is simple, high yield, and large-scale production, so that it may be a green process and convenient to transfer to industrial application. Scheme 1 represents a general route for the high-yield synthesis and highly crystalline metal oxide and mixed oxide NCs as well as noble-metal dispersed oxide hybrid nanocrystals with different morphologies.

Metal oxides including In₂O₃, Y₂O₃, ZrO₂, TiO₂, CeO₂ were selected to illustrate our approach (Scheme 1A) because they are widely recognized for their unique properties as supports and catalysts. Metal oxide NCs were obtained by hydrolysis of the corresponding metal nitrate or bulk oxide powder in basic solution (pH ≈ 12) in the presence of 6-aminohexanoic acid ligand. Under the hydrothermal treatment, metal ions were hydrolyzed to form metal hydroxide and then dehydrated to metal oxide, which further condenses into primary oxide clusters. These clusters aggregated to produce the nuclei, subsequently the oxide nanocrystals were formed via further growth of these nuclei. As seen in Fig. 1, XRD patterns of the resulting samples are well-matched to cubic In₂O₃ (JCPDS 006-0416), monoclinic Y₂O₃ (JCPDS 44-0399), monoclinic ZrO₂ (JCPDS 37-1484),

V₂O₅ powder (0.30 mmol, 0.055 g) and NaOH solution (20 mL, 0.09 M) were mixed for the formation of 0.03 M Na₃VO₄ solution; bulk MoO₃ powders (0.92 mmol, 0.13 g) and NaOH solution (20 mL, 0.09 M) were mixed for the formation of 0.045 M Na₃MoO₄ solution at room temperature under magnetic stirring for about 30 min. (ii) For the synthesis of mixed metal oxide NCs, metal nitrates (0.61 mmol), 6-aminohexanoic acid (1.22 mmol, 0.16 g), were dissolved in 20 mL distilled water. An aqueous 0.03 M sodium tungstate, 0.03 M vanadate, or 0.045 M molybdate solution (20 mL) was dissolved in the above solution under stirring for 10 min at room temperature. An amorphous precipitate was generated immediately from the combination of metal cation and tungstate/vanadate/molybdate anion. The pH value of the initial solution was ~8. The resulting reaction mixture (40 mL) was transferred to a 70 mL Teflon-lined stainless steel autoclave and treated to 180 °C for 20 h. The obtained products were filtered out and washed by distilled water, and dried at 60 °C for 2 h.
pure brookite TiO2 (JCPDS 291-361) without mixture of rutile or anatase phase, and cubic CeO2 (JCPDS 34-0394). The broadening and well-resolved diffraction peaks can be attributed to the nanoscale nature and high crystallinity of the samples; no peaks of any other phases or impurities were detected. Fig. 2 shows representative SEM/TEM images of the nanocrystalline samples of In2O3, Y2O3, ZrO2, TiO2, CeO2. The In2O3 and Y2O3 NCs both exhibit a long rod shape with an average diameter of 80 nm and length of 6 μm (Fig. 2a–d), while the ZrO2 sample shows short nanorod with an average diameter of 0.5 μm and length of 1 μm (Fig. 2e and f). TiO2 nanocrystals with high aspect ratio (60 nm × 8 μm) were mostly belt-like shape (Fig. 2g and h). Unlike the rod morphology of above oxides, the product CeO2 is mainly composed of ultrafine nanocubes with a mean edge length of 50 nm (Fig. 2i). These hydrophilic-surfaced oxide nanocrystals with high crystallinity could be used as an interesting support for the fabrication of novel metal-dispersed oxide hybrid nanocrystals with improved catalytic performance.

The procedure (Scheme 1A) was further used to synthesize mixed metal oxide nanocrystals such as mixed metal tungstates, orthovanadates, and molybdates. Three types of these mixed oxide materials have been the subjects of extensive research in recent years due to their potential applications in various fields. Pure brookite TiO2 is a good photocatalyst for the degradation of organic compounds under UV irradiation in order to purify wastewater from households and industries,

Table 1 Synthesis conditions, structures, and morphologies of a variety of high-crystalline metal oxide and metal mixed oxide nanocrystals via 6-aminohexanoic acid-assisted hydrothermal process

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inorganic precursor</th>
<th>Yield (%)</th>
<th>Solvent</th>
<th>Product</th>
<th>Structure</th>
<th>Shape</th>
<th>Size/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In3+</td>
<td>93</td>
<td>Basic medium</td>
<td>In2O3</td>
<td>Cubic</td>
<td>Rod</td>
<td>80 × 6000</td>
</tr>
<tr>
<td>2</td>
<td>Y3+</td>
<td>93</td>
<td>Basic medium</td>
<td>Y2O3</td>
<td>Monoclinic</td>
<td>Rod</td>
<td>80 × 6000</td>
</tr>
<tr>
<td>3</td>
<td>Zr4+</td>
<td>93</td>
<td>Basic medium</td>
<td>ZrO2</td>
<td>Monoclinic</td>
<td>Rod</td>
<td>0.5 × 1000</td>
</tr>
<tr>
<td>4</td>
<td>Ti4+</td>
<td>93</td>
<td>Basic medium</td>
<td>TiO2</td>
<td>Brookite</td>
<td>Belt</td>
<td>60 × 8000</td>
</tr>
<tr>
<td>5</td>
<td>Ce3+</td>
<td>93</td>
<td>Basic medium</td>
<td>CeO2</td>
<td>Cubic</td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

Transition metal tungstate NCs

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inorganic precursor</th>
<th>Yield (%)</th>
<th>Solvent</th>
<th>Product</th>
<th>Structure</th>
<th>Shape</th>
<th>Size/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Co3+, WO4−</td>
<td>96</td>
<td>Water</td>
<td>CoWO4</td>
<td>Monoclinic</td>
<td>Truncated octahedral</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Mn3+, WO4−</td>
<td>96</td>
<td>Water</td>
<td>MnWO4</td>
<td>Monoclinic</td>
<td>Rod</td>
<td>25 × 50</td>
</tr>
<tr>
<td>8</td>
<td>Zn3+, WO4−</td>
<td>96</td>
<td>Water</td>
<td>ZnWO4</td>
<td>Monoclinic</td>
<td>Rod</td>
<td>15 × 70</td>
</tr>
<tr>
<td>9</td>
<td>Cd3+, WO4−</td>
<td>96</td>
<td>Water</td>
<td>CdWO4</td>
<td>Monoclinic</td>
<td>Rod</td>
<td>50 × 160</td>
</tr>
</tbody>
</table>

Rare earth orthovanadate NCs

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inorganic precursor</th>
<th>Yield (%)</th>
<th>Solvent</th>
<th>Product</th>
<th>Structure</th>
<th>Shape</th>
<th>Size/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>La3+, VO4−</td>
<td>96</td>
<td>Water</td>
<td>LaVO4</td>
<td>Monazite</td>
<td>Rod</td>
<td>8 × 40</td>
</tr>
<tr>
<td>11</td>
<td>Ce3+, VO4−</td>
<td>96</td>
<td>Water</td>
<td>CeVO4</td>
<td>Tetragonal</td>
<td>Rod</td>
<td>10 × 30</td>
</tr>
<tr>
<td>12</td>
<td>Nd3+, VO4−</td>
<td>96</td>
<td>Water</td>
<td>NdVO4</td>
<td>Tetragonal</td>
<td>Rod</td>
<td>10 × 35</td>
</tr>
<tr>
<td>13</td>
<td>Sm3+, VO4−</td>
<td>96</td>
<td>Water</td>
<td>SmVO4</td>
<td>Tetragonal</td>
<td>Cubic</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Gd3+, VO4−</td>
<td>96</td>
<td>Water</td>
<td>GdVO4</td>
<td>Tetragonal</td>
<td>Quasi-sphere</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Er3+, VO4−</td>
<td>96</td>
<td>Water</td>
<td>ErVO4</td>
<td>Tetragonal</td>
<td>Sphere</td>
<td>30</td>
</tr>
</tbody>
</table>

Rare earth molybdate NCs

<table>
<thead>
<tr>
<th>Sample</th>
<th>Inorganic precursor</th>
<th>Yield (%)</th>
<th>Solvent</th>
<th>Product</th>
<th>Structure</th>
<th>Shape</th>
<th>Size/nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>La3+, MoO4−</td>
<td>96</td>
<td>Water</td>
<td>La3(MoO4)3</td>
<td>Tetragonal</td>
<td>Sheet</td>
<td>2 × 200–300</td>
</tr>
<tr>
<td>17</td>
<td>Ce3+, MoO4−</td>
<td>96</td>
<td>Water</td>
<td>Ce3(MoO4)3</td>
<td>Tetragonal</td>
<td>Sheet</td>
<td>2 × 200–300</td>
</tr>
<tr>
<td>18</td>
<td>Gd3+, MoO4−</td>
<td>96</td>
<td>Water</td>
<td>Gd3(MoO4)3</td>
<td>Tetragonal</td>
<td>Sheet</td>
<td>2 × 200–300</td>
</tr>
<tr>
<td>19</td>
<td>Y3+, MoO4−</td>
<td>96</td>
<td>Water</td>
<td>Y3(MoO4)3</td>
<td>Tetragonal</td>
<td>Sheet</td>
<td>2 × 200–300</td>
</tr>
<tr>
<td>20</td>
<td>Er3+, MoO4−</td>
<td>96</td>
<td>Water</td>
<td>Er3(MoO4)3</td>
<td>Tetragonal</td>
<td>Sheet</td>
<td>2 × 200–300</td>
</tr>
</tbody>
</table>

All samples were hydrothermally synthesized using 6-aminohexanoic acid as a capping agent at 180 °C for 20 h.

Scheme 1 A general procedure to synthesize highly crystalline metal oxide, mixed oxide, and hybrid metal/oxide nanocrystals in aqueous medium.
in the presence of 6-aminohexanoic acid ligand (Scheme 1B). XRD patterns of the as-synthesized transition-metal tungstate NC samples are shown in Fig. 3. The diffraction peaks of all samples are well-indexed to pure monoclinic structure: CoWO$_4$ ($a = 4.947$ Å, $b = 5.682$ Å, $c = 4.669$ Å, JCPDS 30-0443), MnWO$_4$ ($a = 4.80$ Å, $b = 5.71$ Å, $c = 4.97$ Å, JCPDS 80-0134), ZnWO$_4$ ($a = 4.689$ Å, $b = 5.724$ Å, $c = 4.923$ Å, JCPDS 15-0774), and CdWO$_4$ ($a = 5.026$ Å, $b = 5.078$ Å, $c = 5.867$ Å, JCPDS 14-676). The XRD patterns show broadening and intensive diffraction peaks due to their nanometre size and high crystallinity. No other XRD peaks for impurities were observed.

Representative TEM images of CoWO$_4$, MnWO$_4$, ZnWO$_4$, CdWO$_4$ nanocrystals are shown in Fig. 4. Under the same synthesis conditions (pH ≈ 9, 180 °C, 20 h), the CoWO$_4$ nanocrystals mainly display truncated octahedron-like shape with uniform size distribution (Fig. 4a). A single truncated octahedron is ≈ 40 nm in size as measured along the longest edge. The surface of the truncated octahedral nanocrystals is smooth with no obvious defects. In order to study the effect of pH of the synthesis solution on shape of the resulting CoWO$_4$ nanocrystals, one series of experiments was carried out with different pH values in the synthetic solution. The pH value in the initial solution was adjusted by using 1 M NaOH solution. When the pH increased from 9 to 10, to 11, the shape of CoWO$_4$ product changed from truncated nanooctahedral nanocrystals to elongated nanocrystals ($\approx 40 \times 50$ nm) and to nanorods ($\approx 40 \times 200$ nm), respectively (Fig. 4b and c). The increase of pH in the reaction solution may influence the selective adsorption of the surfactant molecules on the growth surface of particles leading to the shape elongation of the products. For the MnWO$_4$, ZnWO$_4$, and CdWO$_4$ NC samples, the anisotropic morphologies of all

Fig. 1 XRD patterns of the as-synthesized metal oxide NC samples: (a) In$_2$O$_3$, (b) Y$_2$O$_3$, (c) ZrO$_2$, (d) TiO$_2$, and (e) CeO$_2$.

Fig. 2 SEM/TEM images of the metal oxide NC samples: (a and b) 80 nm \times 6 μm In$_2$O$_3$ nanorods, (b and c) 80 nm \times 6 μm Y$_2$O$_3$ nanorods, (d and e) 0.5 μm \times 1 μm ZrO$_2$ nanorods, (f and g) 60 nm \times 8 μm TiO$_2$ nanobelts, inset of (f), 31 g of the AHA-capped TiO$_2$ nanobelts obtained in a single preparation from 300 mL of the reaction solution using a 700 mL autoclave, and (h) 50 nm CeO$_2$ nanocubes.
products were found. The differences in the average aspect ratio (length/width namely as AAR) of the final NC products were observed: 25 nm \(\times \) 50 nm-sized MnWO\(_4\) nanobars, AAR of 2.0 (Fig. 4f); 15 nm \(\times \) 70 nm-sized ZnWO\(_4\) nanorods, AAR of 4.7 (Fig. 4h); 50 nm \(\times \) 160 nm-sized CdWO\(_4\) nanorods, AAR of 3.2 (Fig. 4l), depending on the nature of transition metals. Interestingly, when the monomer precursor concentration decreases from 0.0150 to 0.0076 M in water medium, polypeptide-stabilized tungstate mesocrystal hierarchical microspheres (e.g., 3 \(\mu \)m-sized MnWO\(_4\)) were achieved. This could be due to the spontaneous-assembly of primary nanoparticles through the backbone–backbone intermolecular hydrogen-bonding interactions of polypeptide chains (Fig. 4g), as illustrated in our recent work.\(^{24}\)

For the rare earth orthovanadate NC samples (REVO\(_4\), RE = La, Ce, Nd, Sm, Gd, Er), XRD patterns of these samples are shown in Fig. 5. It is known that rare earth orthovanadates crystallize in two polymorphs including tetragonal phase (\(t\)-) and monoclinic phase (\(m\)-).\(^{38}\) With an increase of ionic radius of rare earth (RE\(^{3+}\)), RE\(^{3+}\) ions show a strong tendency toward \(m\)-phase orthovanadate due to its higher oxygen coordination number; 9 compared to 8 of the \(t\)-phase orthovanadate. Because La\(^{3+}\) ion has the largest ionic radius in all rare earth ions, the thermodynamically stable state of \(m\)-LaVO\(_4\) is much easier than the metastable state of \(t\)-LaVO\(_4\). In some cases, the tetragonal (\(t\)-) zircon type to monoclinic (\(m\)-) monazite type transformation often occurs at 850–900 \(^\circ\)C or turns the pH value of synthesis solution.\(^{39}\) In our present case, the monazite-type monoclinic LaVO\(_4\) structure with cell parameters \(a = 7.043\) \(A\), \(b = 7.279\) \(A\), \(c = 6.721\) \(A\) (JCPDS 50-0367) was formed (Fig. 5a). On the contrary, the XRD patterns of all other samples (Fig. 5b–f) show

![Fig. 3 XRD patterns of the as-synthesized transition metal tungstate NC samples: (a) CoWO\(_4\), (b) MnWO\(_4\), (c) ZnWO\(_4\), and (d) CdWO\(_4\).](image)

![Fig. 4 TEM/SEM images of the transition-metal tungstate NC samples: CoWO\(_4\) nanocrystals with various shapes of (a) truncated nanoctahedron, (b) nanobar, (c) nanorods, synthesized at different pH values of 9, 10, 11, respectively; (d) CoWO\(_4\) truncated nanoctahedron synthesized in scale-up and (e) photograph of \(\sim 18\) g of AHA-capped CoWO\(_4\) truncated nanoctahedron obtained by a single run from 500 mL of the reaction solution using a 700 mL autoclave, inset of a vial of aqueous CoWO\(_4\) NC suspension, (f) 25 nm \(\times\) 50 nm MnWO\(_4\) nanobars, (g) 3 \(\mu\)m MnWO\(_4\) microspheres, (h) 15 nm \(\times\) 70 nm ZnWO\(_4\) nanorods, and (l) 50 nm \(\times\) 160 nm CdWO\(_4\) nanorods.](image)
Nd) clearly reveal a rod shape with an average size of 8 nm. The selected area electron diffraction (SAED) pattern (Fig. 6d) of the corresponding typical average diameter of 30 nm. Further, the selected area electron Gd, Er. In Fig. 6a–c, TEM images of REVO₄ NCs (RE = La, Ce, Nd, and Sm, Gd, Er) yield nanocubes/spheres. It is seen in Fig. 6, representative TEM images of these rare earth orthovanadate NCs (from panel a to l) exhibit two distinct shapes: rod for La, Ce, Nd, and ellipsoid/cube/sphere for Sm, Gd, Er. In Fig. 6a–c, TEM images of REVO₄ NCs (RE = La, Ce, Nd) clearly reveal a rod shape with an average size of 8 nm × 40 nm for LaVO₄; 10 nm × 30 nm for CeVO₄; and 10 nm × 35 nm for NdVO₄. However, TEM images in Fig. 6d–l exhibit ellipsoid for SmVO₄, cube for GdVO₄, and sphere for ErVO₄ with an average diameter of 30 nm. Further, the selected area electron diffraction (SAED) pattern (Fig. 6d) of the corresponding typical NdVO₄ sample is indexed to a monoclinic-phase single crystal, which is consistent with the above XRD data. Elemental dispersive spectrum (EDS) analysis (Fig. 6e) of the NdVO₄ sample determined the Nd : V molar ratios of 1 : 1. From a series of our present experiments, we found that under the same synthetic conditions, light rare earth orthovanadates (RE = La, Ce, Nd) readily form nanorods, whereas heavy rare earth orthovanadates (RE = Sm, Gd, Er) yield nanocubes/spheres. It seems that the shape of REVO₄ nanocrystals depends on the ionic radius of rare earth. For the larger lanthanide ions (La, Ce, Nd), the corresponding orthovanadates exhibit rod shapes, whereas for the smaller ones (Sm, Gd, Er), the corresponding orthovanadates were found to be cube/sphere ones. Similar results for this type of rare earth vanadate materials were also reported by Li et al.⁴⁰

Rare earth doped orthovanadate nanocrystals have attracted great interest for their luminescent applications.⁴¹–⁴⁳ In this work, Eu⁺ doped NdVO₄ NCs as a typical example were synthesized using the similar method, and their optical properties were studied. The doping Eu⁺ ion in low concentration (5.0 mol%) would not have influence on shape of the NdVO₄ nanorods (Fig. 6f). Fig. S1† shows UV-visible adsorption, photoluminescent (PL) excitation and emission spectra of the as-prepared 5.0 mol% Eu⁺-doped NdVO₄ nanorods suspended in water. The UV region (Fig. S1a†) of this sample exhibits a strong absorption edge at ~283 nm attributing to the charge transfer from the oxygen ligands to the central vanadium atoms inside the VO₄⁻ ions.⁴⁴ As shown in Fig. S1b†, under 218 nm excitation and emission, the excitation spectrum of this sample shows the excitation peaks (434 nm, 7Fo-5L6; 529 nm, 7Fo-5D2) of Eu⁺ within its 4f⁶ configuration.⁴⁴–⁴⁶

The presence of the VO₄⁻ absorption band in the excitation spectrum of Eu⁺ reveals an energy transfer takes place from VO₄⁻ to Eu⁺ in the Eu⁺:NdVO₄.⁴⁷ The emission spectrum of this sample consists of the characteristic emission peaks (449 nm, 5Dₒ⁻7F₁; 486 nm, 5Dₒ⁻7F₂; 560 nm, 5Dₒ⁻7F₃) of the f–f transition of Eu⁺, as reported previously for Eu⁺:YVO₃ nanocrystals.⁴⁸

Furthermore, for the synthesis of rare earth molybdate NCs (RE₂(MoO₄)₃, RE = La, Ce, Gd, Y, Er), typical XRD patterns of these samples are shown in Fig. 7. The diffraction peaks of La₂(MoO₄)₃ sample were well-indexed to the tetragonal-phase structure with lattice parameters of a = b = 5.343 Å, c = 11.780 Å (JCPDS 45-0407). All the other RE₂(MoO₄)₃ (RE = Ce, Gd, Y, Er) were also well-indexed to the tetragonal-phase structure.⁴⁸

The XRD patterns also exhibit broad and intensive diffraction peaks due to their nanometre size and high crystallinity. The (112) peak is more intense than other reflection peaks, which implies the highly preferential oriented growth of the RE₂(MoO₄)₃ nanosheets, as seen in following SAED results. The morphologies of a series of RE₂(MoO₄)₃ nanocrystals were also examined by TEM/SEM images (Fig. 8a–f). TEM images of all samples, including La₂(MoO₄)₃, Ce₂(MoO₄)₃, Gd₂(MoO₄)₃, Y₂(MoO₄)₃, Er₂(MoO₄)₃ NCs, shared thin sheet shape, and their corner and edge were mostly broken or damaged. All the resulting nanosheets have an average side dimension of 200–300 nm and a thickness of ~2 nm. The SEM observation (inset) also indicates that almost 100% of the as-prepared products are super thin nanosheets and no other types of nanoparticles were found. Corresponding SAED patterns (inset of Fig. 8a–f) of all samples revealed the single-crystalline nature and indexed to tetragonal-phase RE₂(MoO₄)₃. The above results reveal that all the RE₂(MoO₄)₃ nanocrystals maintained the super-thin sheet morphology, and no significant influence of rare earth ionic radius on morphology of the products was observed. Further, the shape of RE₂(MoO₄)₃ nanocrystals was changed depending on reaction temperature (for the temperature less than 180 °C). Taking the La₂(MoO₄)₃ sample as a typical example, the reaction was performed at 100, 130, 160 °C, the resulting products of La₂(MoO₄)₃ nanocrystals obtained with shapes of ~300 nm microspheres, ~110 nm × 340 nm nanorods, ~2 nm × 200–300 nm sheet-shaped nanosquares, respectively (Fig. 8g–l). These shape changes may close to minimize the surface energy of particle during the growth.

Similarly, as in the case of metal tungstate materials (Fig. 4g), these molybdate nanocrystals, for example, La₂(MoO₄)₃ could offer nanobuilding blocks for the further construction of the hierarchical aggregated microparticle materials, as seen in Fig. 8b. We expect that the 2D nanosheets and 3D assembled
Microspheres of rare earth molybdate materials have promising applications in electronic and optical fields, which mainly arise from their structural anisotropy, nearly perfect crystallinity, and quantum confinement effects in the thickness. Furthermore, such materials could act as a stable support for the preparation of doped nanomaterials, in particular, of nitrogen doped nanosheets to reduce the band-gap energy, which enhances their activity.

To understand the formation mechanism of the RE$_2$(MoO$_4$)$_3$ nanosheets, we systematically tracked the time course of the sheet growth process of a representative La$_2$(MoO$_4$)$_3$ sample. Fig. S2a–c† shows representative TEM images of the La$_2$(MoO$_4$)$_3$ samples synthesized at different reaction times, e.g., 2, 6, and 20 h, while keeping the other experimental conditions unchanged (La/Mo of 2 : 3, AHA/(La + Mo) of 2 : 1, 180 °C). When the aging time reached 2 h, small particles tended to agglomerate together for the formation of the dense aggregates with size of ~200 nm (Fig. S2a†). A careful examination of the high-magnification TEM images (inset of Fig. S2a†) clearly indicates that all the aggregates are made up from small particles of ~2 nm. By further prolonging the reaction time to 6 h, these aggregates crystallized into the chains of irregular sheets, which were self-assembled into 2-D arrays (Fig. S2b†). Finally, when the reaction time is up to 20 h, these irregular species grew into the quite uniform nanosheets (Fig. S2c†).

On the basis of these TEM results, the transformation of dense aggregates of primary particles into RE$_2$(MoO$_4$)$_3$ nanosheets could be due to Ostwald ripening, lateral-aggregation, and dissolution/recrystallization processes in the presence of 6-aminohexanoic acid molecules in water medium. The whole process is illustrated in Fig. S2d†. When two precursor solutions of La$^{3+}$ cations and MoO$_4^{2-}$ anions are mixed together in the

![Fig. 6](image-url) TEM images of the rare earth orthovanadate NC samples: (a) 8 nm × 40 nm LaVO$_4$ nanorods, (b) 10 nm × 30 nm CeVO$_4$ nanorods, (c) 10 × 35 nm NdVO$_4$ nanorods, (d) SAED and (e) EDS patterns of corresponding NdVO$_4$, (f) 5.0 mol% Eu$^{3+}$:NdVO$_4$ nanorods, (g) 30 nm SmVO$_4$ nanoellipses, (h) 30 nm GdVO$_4$ nanocubes, and (l) 30 nm ErVO$_4$ nanospheres.

![Fig. 7](image-url) XRD patterns of the as-synthesized rare earth molybdate NC samples: (a) La$_2$(MoO$_4$)$_3$, (b) Ce$_2$(MoO$_4$)$_3$, (c) Gd$_2$(MoO$_4$)$_3$, (d) Y$_2$(MoO$_4$)$_3$, and (e) Er$_2$(MoO$_4$)$_3$.
presence of 6-aminohexanoic acid, an high supersaturating degree could be reached, and amorphous La₂(MoO₄)₃ particles were formed immediately. The tiny crystalline nuclei were firstly generated in a supersaturated solution at elevated temperature and then grew into nanoparticles by controlled crystallization and growth of the crystals through the process known as Ostwald ripening. Subsequently, the primary nanoparticles quickly build anisotropically and spontaneously self-aggregated along the 2D direction; the nanosheets were grown until all the particles were consumed through lateral-aggregation mechanism. Finally, the shape transformation of the crystallized nanosheets in the synthesis solution often operates through a classical dissolution–recrystallization mechanism to minimize the surface energy of the system, resulting in the formation of the quite uniform nanosheets.

Furthermore, to prove AHA capped on the surface of La₂(MoO₄)₃ nanosheets, two characterization techniques were used: XPS and FTIR. This sample was washed several times with distilled water, only 2.0 atomic% of nitrogen from –NH₂ of 6-aminohexanoic acid molecules capped on the surface of La₂(MoO₄)₃ nanosheets was found by XPS technique, as shown in Fig. S3†. The O1s, C 1s, N 1s, C 1s XPS spectra (Fig. S3c and S3d†) of this sample suggest that 6-aminohexanoic acid molecules bound on the La₂(MoO₄)₃ NC surface. This result was further confirmed by FTIR spectrum. Fig. S4† shows that an IR band at 2900 cm⁻¹ attributed to the C–H stretching vibrations of methylene groups of the AHA molecules were observed. Two bands at 1400 and 3460 cm⁻¹ correspond to C–N bending and –NH₂ stretching modes of AHA molecules, respectively. This indicates that the adsorption of –NH₂ groups on the oxide nanocrystal surface and free –COOH groups was oriented outward, consequently the colloidal AHA-capped oxide nanocrystals became hydrophilic and dispersed in water medium, as previously illustrated by our group.²⁴ As compared to the nonaqueous synthetic routes using hydrophobic organic surfactants such as fatty acids, aliphatic amines, alkyl phosphate oxides, our aqueous medium-based approach has many advantages: water is adopted as the continuous solution phase and inorganic salts were used as starting materials; amphiphilic 6-aminohexanoic acid biomolecule is an interesting stabilizer to yield the biocompatible nanocrystal products. Because of the high solubility of the salts in aqueous solution, it could be applicable to synthesize the nanoparticles in scale up by using the high precursor monomer concentrations. It was found that the morphology of products was essentially unchanged with the use of large volume of the synthesis. For example, for TiO₂ and CoWO₄ NCs, we were able to prepare ultra-large quantities of 31 g of 60 nm × 8 μm TiO₂ nanobelts (inset of Fig. 2g) and 18.9 g of 20 nm-sized CoWO₄ nano-octahedrons (inset of Fig. 4e) in a single run using a 700 mL-sized autoclave. The average yield of synthesis reaction was about 93% for metal oxides and 96% for mixed oxides (see Table 1). Hence, the current aqueous-based route is readily applicable to the large-scale synthesis for the academic laboratory as well as the industrial applications because of a simple way, simplicity, high yield, and the use of nontoxic cheap reagents.

Recently, noble-metal deposited semiconductor nanocrystals have been received much attention due to their unique photocatalytic performance.⁵⁴,⁵⁵ Our synthetic approach for such
noble-metal dispersed semiconductor NCs relies on two sequential seeded-growth steps, as sketched in Scheme 1C. Using the pre-synthesized AHA capped oxide nanocrystals as nano-support and metal nitrate as metal source, the amine group of AHA ligand was bonded to the surface of oxide nanocrystals and other end uncoordinated carboxylic acid of AHA was outwards to water. In water medium (pH ~ 7.5), noble-metal precursor cations strongly adsorbed on the negatively charged surface of 6-aminohexanoic acid-stabilized oxide nanocrystals through electrostatic attraction, due to the deprotonation of –COOH groups (see Experimental section). This technique guarantees preferential heterogeneous nucleation and growth metal precursors on the surface of the substrate seeds via the interaction between noble-metal precursor and uncoordinated carboxylic group of AHA-capped oxide nanocrystals followed by reduction using NaBH₄. This leads to the high dispersion of tiny metal particles on the nanosupport. Here we selected four metal oxide NCs: CeO₂, TiO₂, In₂O₃, Y₂O₃ and three mixed oxide NCs: CoWO₄, MnWO₄, La₂(MoO₄)₃ and two noble metals: Ag, Au, as typical examples for the syntheses of metal–semiconductor nanohybrids. Nanohybrids of Ag/CeO₂, Ag/Y₂O₃, Ag/In₂O₃, Ag/MnWO₄, Au/MnWO₄, Ag/CoWO₄, Au/CoWO₄, Au/La₂(MoO₄)₃ were successfully prepared. The whole loading amount of metal was kept to 10.0 weight percent. The structural-compositional details of the heterostructures have been studied by multi-technique combination including TEM, XRD, XPS, UV-vis analyses.

TEM images of a variety of metal/oxide nanohybrids with a noble-metal content of 10.0 wt% show that such nanohybrids consisted of metallic clusters/dots and oxide NC supports, as presented in Fig. 9. Also, one can see that numerous deposited metallic nanoparticles were attached to a oxide nanocrystal support. The 5–7 nm-sized Ag nanodots were observed, while the tiny Au nanodots with smaller diameter of 2–3 nm were dispersed effectively on the hydrophilic surface of support. Metal aggregates were also not found by the TEM observation. In all cases, after decorating with a metallic ion precursor, tiny Ag or Au nanodots formed and grew on the surface and the surfaces become coarse. It was noteworthy that no separated noble-metal particles were observed, indicating that the AHA-stabilized oxide nanocrystals provide a large number of adsorption sites for the noble metal nucleated and grown on the oxide NC surface under our experimental conditions. The resulting metal nanoclusters/dots thus are evenly distributed over the entire NC surface without significant overlap. For the metal (Ag, Au)/oxide hybrid samples, XRD spectra (Fig. S5 and S6 in ESI†) exhibited two sets of strong diffraction peaks, indicating that the hybrid products are composite materials with high crystallinity. Those marked with “*” can be indexed to face-centered cubic (fcc) Ag structure (JCPDS 74-1728), and face-centered cubic (fcc) Au structure (JCPDS 01-1174), while the others can be indexed to the corresponding oxide structure.

The particle size dependence of the electronic properties has been reported in the literature. In this work, the Ag/TiO₂ nanobelt sample was selected as a typical example. In this case, the size of Ag particles and their distribution on the TiO₂ nanobelt surface were conducted by tuning the silver precursor.

Fig. 9 TEM images of 10.0 wt% noble-metal/oxide nanohybrid samples: (a) Ag/In₂O₃, (b) Ag/Y₂O₃, (c) Ag/CoWO₄, (d) Au/CoWO₄, (e) Ag/MnWO₄, (f) Au/MnWO₄, (g) Au/La₂(MoO₄)₃, (h) Ag/CeO₂ and (l) scheme of the proposed mechanism of metal precursors deposited on the pre-synthesized oxide nanocrystals for the formation of metal/oxide nanohybrids.
concentrations in the synthesis solution. Fig. 10 shows TEM images of hybrid Ag/TiO₂ nanobelts prepared with different Ag contents ranging from 5.0 to 10.0 and 15.0 wt% in the synthesis solution. The Ag concentration in solid solution was determined by XPS technique. The Ag amount in 5.0 wt% Ag/TiO₂, 10.0 wt% Ag/TiO₂, and 15.0 wt% Ag/TiO₂ samples was estimated to be 4.8, 9.5, and 14.6 wt%, respectively, corresponding to 4.8 wt% Ag/TiO₂, 9.5 wt% Ag/TiO₂, and 14.6 wt% Ag/TiO₂. When 4.8 wt% Ag was deposited on TiO₂ nanobelts, very small Ag nanoclusters with an average diameter of ~2 to 3 nm were observed (Fig. 10a). When the Ag loading was increased to 9.5 wt% Ag nanodots with a particle size of 5–7 nm was found (Fig. 10b). In both cases, they were highly dispersed on the nanobelt surface. No evidence of Ag aggregates was detected. With higher Ag loading (14.6 wt%), the Ag particles with a larger size (15–20 nm) and a broad distribution were found (Fig. 10c). Further increasing this ratio (e.g., >14.6 wt%), large Ag particles and only few smaller particles were observed, indicating that a coalescence of Ag particles occurred during the synthesis. The crystalline feature of Ag particles were observed, indicating that a coalescence of Ag nanoclusters and the interaction between Ag clusters and TiO₂ NCs.

The as-prepared 9.5 wt% Ag/TiO₂ nanobelt sample was characterized by XPS technique for the evaluation of the metal oxidation state. Fig. S7† displays high-resolution XPS spectra for Ti 2p and Ag 3d species. The Ti 2p spectrum (Fig. S7a†) exhibits two peaks. The Ti 2p₃/₂ and Ti 2p₁/₂ peaks are centered at 450.3 and 456.1 eV, respectively, with Δ = 5.8 eV, indicating those of pure TiO₂ phase.⁶⁰ The Ag 3d₅/₂ peak (Fig. S7b†) is centered at 367.7 eV, which are attributed to metallic Ag.⁶¹ Remarkably, this Ag 3d₅/₂ binding energy value of the Ag/TiO₂ sample is lower as compared to that of the pure metallic Ag (368.0 eV). Furthermore, as seen in Fig. S8†, O 1s XPS spectrum exhibits two peaks: one peak at 528.8 eV corresponds to oxygen in the lattice of TiO₂ NCs and the other one at 530.7 eV can be attributed to the adsorbed oxygen on the TiO₂ NC surface. The results indicate that the shift of the binding energy of Ag 3d₅/₂ to the lower site can be mainly ascribed to the electrostatic interaction between the deposited Ag clusters and TiO₂ nanobelts.

UV-visible spectra of the synthesized Ag/TiO₂ samples with Ag loadings of 4.8, 9.5, 14.6 wt% are shown in Fig. 11. For pure TiO₂ nanobelts, the optical absorption threshold peak is located approximately at 280–290 nm which corresponds to the band gap energy value of 3.18 eV.⁶² This value is very close to that of the commercial TiO₂ (Degussa P-25, E₉ = 3.2 eV).⁶³ For the Ag/TiO₂ nanobelts with different Ag loadings, an additional peak at 352 nm was observed. This peak is attributable to the metallic Ag nanodots on the Ag/TiO₂ heterostructures.⁶⁴ The intensity of this peak increases as a function of Ag loading in the Ag/TiO₂ sample. Its intensity increases gradually with an increase of the Ag content from 4.8 to 14.6 wt%, possibly due to the size-dependent surface plasmon resonance effect of metallic Ag clusters and the interaction between Ag clusters and TiO₂ NCs.

The metal–semiconductor nanohybrids are expected to exhibit high photocatalytic efficiency. To evaluate the photocatalytic performance, we selected the 9.5 wt% Ag/TiO₂ sample for the photocatalytic decomposition of methylene blue (MB) in water under UV illumination. The 9.5 wt% Ag/TiO₂ hybrid nanobelt sample after calcination at 500 °C at 2 h possesses surface area of 32 m² g⁻¹ and pore volume of 0.42 cm³ g⁻¹ (Fig. S9†). In comparison, the samples of pure TiO₂ nanobelts, commercial TiO₂-P25, 9.5 wt% Ag/TiO₂ nanohybrids and 9.5 wt% Ag/TiO₂-P25 were used under the same testing conditions. As seen in Fig. S10A†, UV-visible spectra of the MB aqueous solution (16 mL, 0.05 mM) containing 0.015 g catalysts were recorded at different time intervals. The absorption double peaks at 609 and 667 nm are characteristic of methylene blue. The intensity of these peaks decreases as a function of irradiation time, indicating the decomposition of MB. For the 9.5 wt% Ag/TiO₂ hybrid catalyst, after 80 min of reaction time, these peaks completely disappeared, indicating the complete degradation of methylene.

Fig. 10 Effect of Ag ion content (C, wt%) on Ag particle diameters (d) in the solid solution. TEM images of the Ag/TiO₂ hybrid nanobelt samples with different Ag contents (C, wt%): (a) C = 4.8, d = 2–3 nm (b) C = 9.5, d = 5–7 nm, (c) C = 14.6, d = 15–20 nm, (d) dark-field TEM image of a single 9.5 wt% Ag/TiO₂ nanobelt.

Fig. 11 UV-visible absorption spectra of the as-synthesized Ag/TiO₂ nanohybrids with the different Ag contents.
blue in the aqueous solution. The pure TiO2 nanobelts show a slightly higher catalytic activity than that of commercial TiO2-P25. This could be due to the shape effect on the photocatalytic efficiency (Fig. S10B†). Both hybrid Ag/TiO2 materials show better photocatalytic activity than that of pure TiO2 materials. However, the hybrid Ag/TiO2 nanobelts clearly exhibit a much higher performance for the photocatalytic degradation of MB as compared to Ag/P25. The high photocatalytic activity of Ag/TiO2 NCs could be due to a very high dispersion of Ag clusters on the individual TiO2 NCs and the TiO2 shape effect.

A possible photocatalytic mechanism of Ag/TiO2 system is proposed in Scheme S1†. In the Ag–TiO2 system, electrons will migrate from Ag to the conduction band (CB) of TiO2 to achieve the Fermi level equilibration through Ag–TiO2 interaction. When the catalysts are illuminated by UV light with photon energy higher than the band gap of TiO2, electrons (e−) in the valence band (VB) can be excited to the CB with simultaneous generation of the same amount of holes (h+) left behind. The deflected energy band in the space charge region facilitates the photoinduced charging events in ZnO–Au nanoparticles. Charge distribution and Fermi-level equilibration, J. Phys. Chem. B, 2003, 107(30), 7479–7485.

References

20 P. Lakshminarayana and X. Qing-Hua, A single-step synthesis of gold nanochains using an amino acid as a capping agent and characterization of their optical properties, *Nanotechnology*, 2008, **19**(7), 075601.

