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Résumé 
Les réseaux de neurones artificiels (RNA) suscitent toujours un vif intérêt dans la 

plupart des domaines d’ingénierie non seulement pour leur attirante « capacité 

d’apprentissage » mais aussi pour leur flexibilité et leur bonne performance, par rapport aux 

approches classiques. Les RNA sont capables  «d’approximer» des relations complexes et 

non linéaires entre un vecteur de variables d’entrées et une sortie . Dans le contexte des 

réacteurs multiphasiques le potentiel des RNA est élevé car la modélisation via la 

résolution des équations d’écoulement est presque impossible pour les systèmes gaz-

liquide-solide. L’utilisation des RNA dans les approches de régression et de classification 

rencontre cependant certaines difficultés. Un premier problème, général à tous les types de 

modélisation empirique, est celui de la sélection des variables explicatives qui consiste à 

décider quel sous-ensemble  des variables indépendantes doit être retenu pour 

former les entrées du modèle. Les autres difficultés à surmonter, plus spécifiques aux RNA, 

sont : le sur-apprentissage, l’ambiguïté dans l’identification de l’architecture et des 

paramètres des RNA et le manque de compréhension phénoménologique du modèle 

résultant.  

x y

xx ⊂s

Ce travail se concentre principalement sur trois problématiques dans l’utilisation des 

RNA: i) la sélection des variables, ii) l’utilisation de la connaissance apriori, et iii) le 

design du modèle. La sélection des variables, dans le contexte de la régression avec des 

groupes adimensionnels, a été menée avec les algorithmes génétiques. Dans le contexte de 

la classification, cette sélection a été faite avec des méthodes séquentielles. Les types de 

connaissance a priori que nous avons insérés dans le processus de construction des RNA 

sont : i) la monotonie et la concavité pour la régression, ii) la connectivité des classes et des 

coûts non égaux associés aux différentes erreurs, pour la classification. Les méthodologies 

développées dans ce travail ont permis de construire plusieurs modèles neuronaux fiables 

pour les prédictions de la rétention liquide et de la perte de charge dans les colonnes garnies 

à contre-courant ainsi que pour la prédiction des régimes d’écoulement dans les colonnes 

garnies à co-courant.                                                      . 
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Abstract 
Artificial neural networks (ANN) have recently gained enormous popularity in 

many engineering fields, not only for their appealing “learning ability,” but also for their 

versatility and superior performance with respect to classical approaches. Without 

supposing a particular equational form, ANNs mimic complex nonlinear relationships that 

might exist between an input feature vector x and a dependent (output) variable y. In the 

context of multiphase reactors the potential of neural networks is high as the modeling by 

resolution of first principle equations to forecast sought key hydrodynamics and transfer 

characteristics is intractable. The general-purpose applicability of neural networks in 

regression and classification, however, poses some subsidiary difficulties that can make 

their use inappropriate for certain modeling problems. Some of these problems are general 

to any empirical modeling technique, including the feature selection step, in which one has 

to decide which subset xs ⊂ x should constitute the inputs (regressors) of the model. Other 

weaknesses specific to the neural networks are overfitting, model design ambiguity 

(architecture and parameters identification), and the lack of interpretability of resulting 

models. 

This work addresses three issues in the application of neural networks: i) feature 

selection ii) prior knowledge matching within the models (to answer to some extent the 

overfitting and interpretability issues), and iii) the model design. Feature selection was 

conducted with genetic algorithms (yet another companion from artificial intelligence area), 

which allowed identification of good combinations of dimensionless inputs to use in 

regression ANNs, or with sequential methods in a classification context. The type of a 

priori knowledge we wanted the resulting ANN models to match was the monotonicity 

and/or concavity in regression or class connectivity and different misclassification costs in 

classification. Even the purpose of the study was rather methodological; some resulting 

ANN models might be considered contributions per se. These models-- direct proofs for the 

underlying methodologies-- are useful for predicting liquid hold-up and pressure drop in 

counter-current packed beds and flow regime type in trickle beds. 
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Foreword 
The core of each chapter in this dissertation is built from the results of one or more 

scientific articles, which at the time of the thesis submission were either published or in 

evaluation. The first author in all six articles is also the submitter of this PhD thesis. The 

introductory section in each article was edited to improve the continuity of the thesis. 

Certain chapters were further edited to avoid the redundancy typical of theses built from 

articles. 

The first chapter contains the results of three articles dealing with dimensionless neural 

network correlations. The first article, focusing on the neural networks inputs optimization 

with genetic algorithms, was published in Industrial and Engineering Chemistry Research, 

41(10), 2002, 2543-2551. The second, concerning primarily the match of prior knowledge 

within the neural networks was published in Chemical Engineering and Processing, 42(8-

9), 2003, 653-662. The last article, studying the benefits of combining several neural 

network models, was published in Industrial and Engineering Chemistry Research, 42(8), 

2003, 1707-1712. 

In the second chapter, another alternative-- using dimensional features directly in the 

models-- is explored. In a fourth paper, which has been accepted by Computers and 

Chemical Engineering (2004), we developed a procedure to obtain mathematically 

guaranteed monotonic neural networks that match concavity information. Model training 

was performed with a genetic algorithm - genetic hill climber optimizer. 

The last chapter deals with classification issues. It is composed from two papers. While the 

first is still in evaluation, the second is already accepted at Chemical Engineering Science 

(2004). The former (fifth article) treats the issue of feature selection, with information 

theoretic or others subset goodness measure while sequential methods are used as 

combinatorial optimization schemes. A natural extension of this study is the sixth article, 

which uses the features selected in the previous study to explore a multitude of 

classification algorithms while keeping in mind the prior knowledge matching. As with 

most scientific work, many queries and attempts from this three-year research are not 

presented here, but were nonetheless valuable experientially.                                               .
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Introduction and objectives 
 

The aim of the present work was to improve neural network modeling practice in the 

context of multiphase reactors data modeling. Here the neural networks served as universal 

function approximators, tackling the two general paradigms in statistical pattern 

recognition: regression and classification. While in regression an attempt is made to 

approximate a continuous (usually highly nonlinear) output variable given an known input 

feature vector, in classification the task is to assign particular realizations of the feature 

vector into a finite number of predefined classes (usually non-linearly separable and 

overlapping). In multiphase reactors, the function approximation was the typical application 

of neural networks thus far; i.e., formulation of some known problems in terms of 

classification are less likely to be encountered in the literature.  

Typically, in data mining, one disposes of a collection of data and wants to extract 

as much information as possible without having the possibility to undertake other 

experimental observations. Our research group (Larachi F. and Grandjean B.P.A.) gathered 

almost all-nonproprietary information available for several types of multiphase reactors. In 

such situations, if one tries to use neural networks to model the complex input output 

relationships, the following problems are often encountered:  i) feature selection (FS), ii) 

model design (MD) (architecture and parameters learning), and iii) qualitative prior 

knowledge (PK) matching. Most of the work stream in this thesis was directed toward these 

issues, which are by themselves active research areas dealing with neural networks and 

statistical pattern recognition. Besides attempting to update the multiphase reactors neural 

networks modeling practice, we focused on incorporating domain-specific prior knowledge 

into the neural network models. Examples of such prior knowledge information were 

monotonicity and concavity (for regression problems) and different misclassification costs 

and class connectivity (in classification).        

 The remaining part of the Introduction section presents a short description of the 

multiphase reactors general problematic, followed by the neural networks and the above-

mentioned related issues. It closes with a schematic presentation of the research path 

followed in this work. A more detailed introduction and corresponding bibliographical 

review will be made in each corresponding subsequent section.  
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Multiphase reactors 

The multiphase reactors (Gas-Liquid-Solid) are frequently used today in the 

chemical and petrochemical industry to conduct the hydrogenation of unsaturated oils, 

hydrodesulphurization of petroleum feedstocks, hydrodenitrogenation, hydrocracking, etc. 

(see Ramachandran and Chaudhari, 1983; Dudukovic et al., 2002). A function of the static 

of the bed, the G-L-S reactors can be delimited into two main categories: fixed bed reactors 

and slurry reactors. In the first category, three types of flow can be distinguished: 

concurrent down flow of gas and liquid (trickle beds), down flow of liquid and 

countercurrent up flow of gas, and concurrent up flow of both gas and liquid (packed-bed 

bubble column). In the second category, we usually find mechanically agitated slurry 

reactors (catalyst particles are kept in suspension by means of mechanical agitation), bubble 

column slurry reactors (the particles are suspended by means of gas-introduced agitation), 

and three-phase fluidized-bed reactors (particles suspended because of combined action 

bubble movement and concurrent liquid flow). 

  The design and efficiency of this equipment requires knowledge of hydrodynamics 

and transport characteristics: flow regimes, pressure drop, phase holdups, mass transfer 

coefficients, etc. The rigorous theoretical treatment derived from the first principles of the 

multiphase flow problem remains problematic; that is why the most of these characteristics 

fail to be accurately predicted using phenomenological models. A review of the multiphase 

reactors problematic would reveal that the preponderant knowledge of the most important 

aspects of three-phase reactors resides in the form of empirical correlations. Since the 

pioneering of the multiphase systems, data has been correlated to predict characteristics, but 

even today there are numerous restrictions regarding the validity of these correlations for 

different systems and/or values of the operating parameters. The lack of available methods 

to predict the key fluid dynamics parameters is emphasized also in Dudukovic et al. (2002). 

On the other hand, the current increase in experimental data availability and quality 

measured in the three-phase systems, together with the recent development of data mining 

tools such as artificial neural networks (ANN), backed by an increase of computation 

power, have inspired researchers to develop empirical correlations for the key 

characteristics of these systems.  
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Artificial neural networks 

Actually there are many examples of successful applications of ANN computing to 

correlate heat, mass, and momentum transport in multiphase flow literature. ANN 

correlations have been derived for the pressure gradient in distillation columns (Whaley et 

al., 1999; Pollock et al., 2000) and textile fabrics applications (Brasquet et al., 2000), for 

flooding inception and interfacial mass transfer in counter-current random-packing towers 

(Piché et al., 2001a, 2001b), for mass transfer applications in stirred tanks (Yang et al., 

1999), trickle beds (Iliuta et al., 1999a), and fast fluidized beds (Zamankhan et al., 1997), 

for the displacement of water during infiltration in porous media of non-aqueous phase 

liquids (Morshed et al., 2000), for holdups and wake parameters in gas-liquid-solid 

fluidization (Larachi et al., 2001), for the prediction of bubble diameter in bubble columns 

(Jamialahmadi et al., 2001), and for improving simulation of multiphase flow behavior in 

pipelines (Rey-Fabret et al., 2001).  

 The most common artificial neural networks type used in such function approximation 

applications is the multi-layered feed-forward neural network, also known as the multi-

layer perceptron (MLP) (Rumelhart et al. 1986). These “black-box” modeling tools have 

gained enormous popularity in many other engineering fields, perhaps due not only to their 

appealing “learning ability,” but also because of versatility and performance with respect to 

classical statistical methods. Without supposing a particular equational form, MLPs are able 

to mimic complex nonlinear relationships between an input feature vector x and a 

dependent (output) variable y by consuming the information in a set of training samples of 

known input and output values. The parameterized neural network fitting function with a 

single output (approximating thus a scalar function) has the form:  
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vector. The J activation functions in the first layer and the single one in the output layer 

 are sigmoid functions, while the I+1 component of the feature  vector, , and the 

)1(
jσ

)2(σ 1+Ix



4 
 
J+1 activation function, , are set to a constant value of 1. The sigmoid function is 

defined as: 

)1(
1+Jσ

ze
z −+

=σ
1

1)(           (I.2)  

Such a neural network function is capable of universal function approximation, provided 

enough hidden neurons are available and σ is not polynomial (Cybenko, 1989; Hornik, 

1990). Training of the neural network means determining the parameters w in such a way 

that the estimate produced by the neural network )ˆ,()(ˆ wxx fy =  closely approaches the 

true value on a set of training samples (the design set))(xy ( ){ }nry rr ...1,)(, =D = xx . The 

training algorithms minimize the sum of squared prediction errors on the training samples 

using gradient-based techniques.  See McLoone, (1997) for a review of the fast gradient-

based techniques to optimize network weights. 

 

Problems associated with neural network modeling 

The general-purpose applicability of neural networks in regression (when y is 

continuous) and classification (when y is discrete) does pose some subsidiary difficulties 

that can reduce their appeal. Some of these problems are general to any modeling 

technique, while others are more specific to neural networks. This doctoral dissertation 

analyzed these problems and devised new methodologies to handle them. In the first 

category is the feature selection (FS) step, in which one has to decide which subset 

should constitute the inputs (regressors) in the model. Feature selection is a method 

of dimensionality reduction, which may lessen the number of samples required for model 

training and increase reliability of weight estimates and model performance (Jain et al., 

2000). Feature selection requires defining a measure of goodness of the potential subsets  

as well as a combinatorial optimization algorithm to generate these solutions by 

maximizing the goodness measure. In the context of regression, one may use as set 

goodness measure the negative value of MSE (mean squared error) or AARE (average 

absolute relative error). In the context of classification, some class separability measures or 

xx ⊂s

sx
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the accuracy rate of the resulting classifier may be used to distinguish among subsets. An 

excellent review of features saliency measures may be found in the dissertation of Steppe 

(1994). Once a criterion for comparing the relevance of subsets is defined, a combinatorial 

optimization algorithm should be used to identify the subset maximizing the criterion. 

There are several kinds of such algorithms. The most straightforward is the enumerative 

technique, in which one has to test each possible feature combination to pick the best one. 

Others, like the sequential methods (see Pudil et al., 1994), are stepwise; i.e., start with the 

single best feature (or with all features), and then add (or respectively remove) one or more 

features at a time. Other procedures are in the class of genetic algorithms (GA) (see 

Goldberg, 1989), where the relevance measure is maximized by evolving a population of 

possible solutions (subsets). 

Other problems more specific to the neural networks include the overfitting 

phenomenon (also called overtraining), which appears when the neural network too closely 

approaches the training data points and is not able to generalize (interpolate) well in new 

situations.  The literature proposes different approaches for preventing overfitting (see 

Tetko, 1997; Prechelt, 1998; Gencay, 2001), but rarely can this phenomenon be avoided, 

especially when data is noisy and sparse.  

The non-transparency of the resulting models is perhaps the greatest deficiency of 

the neural networks from an engineering perspective. When one tries to interpret a resulting 

ANN model, the only information he may withdraw is the saliency of the input variables-- 

i.e., a measure of their contribution at the final output, as proposed by Garson (1991) or 

Steppe (1994).  Another interesting attempt to extract knowledge from a trained ANN 

model is that of Daniels and Kamp (1998), who inferred the signs of the derivatives of the 

function to learn with respect to the input feature , y ix
ix

y
∂
∂ , from 

ix
f

∂
∂ )ˆ,( wx  where  

is the trained neural network approximating . Here refers to the estimated (learned) 

weights. The possibility of reducing overfitting and consequently increasing confidence in 

the predictions of ANNs, while simultaneously giving more interpretability to the resulting 

ANN models, is to embedded prior knowledge about the characteristic to approximate, . A 

common type of a priori knowledge encountered in multiphase reactors is the monotonicity 

)ˆ,( wxf

y

y ŵ
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and in some cases the concavity of with respect to some dimensional variables describing 

the G-L-S system. This knowledge, sometimes referred to as the modeler’s bias (Sill, 

1998), is often found not only in chemical engineering (Kay et al., 2000) but in other fields 

as well, e.g., human cognition, reasoning, decision making, etc. (Abu-Mostafa, 1993; 

Wang, 1996). Consider that  is the pressure drop in counter current packed beds. Then 

one would expect  to predict higher output with increasing gas velocity. Of course, 

such qualitative prior knowledge should be supported by physical principles governing the 

system and be manifested within the data. ANN models matching the monotonicity prior 

knowledge have to be treated differently, whether the dimensional variables with respect 

expected monotonicity are directly fed into the network as inputs or if they are first 

combined into dimensionless Buckingham 

y

y

)ˆ,( wxf

Π groups. In the former case, mathematically 

guaranteed neural networks can be obtained by constraining the signs of the neural 

network’s weights during the training process; in the latter case they can only be checked 

and assessed (analytically or numerically) after training. In the context of classification, 

taking as an example the flow regime classification in trickle beds, there is also some prior 

knowledge that we may exploit to increase the transparency of the resulting ANN model 

and boost its expected performance. Such knowledge includes the different costs associated 

with various misclassifications, which means giving more penalties to more severe errors. 

Additionally, one would expect that the impact of an input variable on the simulated output 

of a classification model would exactly match the one observed in practice. 

 Instead of including prior knowledge in the ANN model, one can associate the 

ANN model with a phenomenological model, generating a hybrid predictor. Ideally this 

would combine the accuracy of ANN predictors with the robustness of the 

phenomenological model. For e.g., in a water treatment optimization problem, Côté et al. 

(1995) used a feed-forward ANN to model the errors between the simulated responses 

given by a mechanistic model and the corresponding experimental values. Iliuta et al. 

(1998) and (1999b), in a multiphase modeling issue, used neural networks to predict some 

parameters appearing in a phenomenological model. Acuna et al. (1999) studied several 

possibilities in combining neural network models with phenomenological models, resulting 
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into so-called grey-box models that they applied when predicting kinetic rates for a 

fermentation process. 

In conclusion, this work focuses on three issues in the application of neural networks to 

regression and classification problems: i) feature selection (FS), ii) model design (MD) 

(architecture and parameters learning), and iii) qualitative prior knowledge (PK) matching. 

All issues did not receive equal attention. For example, the model design (MD) was not 

treated as an issue per se, but this step is mandatory in any experimentation involving 

neural networks. However, in the second chapter we developed a customary procedure to 

train the network, so we added this issue to the list with the more documented ones. A 

synthesis of the workflow of this research is given in Figure I. 1.  

Although the purpose of the study was rather methodological, some concrete finite ANN 

models were obtained as proof of the underlying methodologies. These models may be 

useful when predicting liquid hold-up and pressure drop in counter current packed beds and 

classifying flow regimes in trickle beds. 
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Algorithm 
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Legend: 
FS = Feature Selection; PK= Prior Knowledge Assessing or Embedding 
MD=Model Design (architecture and weights identification) 
J=number of hidden neurons in ANN 

Problem: Flow regimes classification in trickle 
beds Problem: Pressure Drop in Counter-Current reactors  

 
 Combining multiple ANN models to decrease 

prediction error and increase monotonic behavior. 
 
 

Figure I. 1 Synthesis of research topics and methodology covered in this work. Dotted lines delineate the different investigations that 
constituted the object of a publishable paper.
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1. Neural network dimensionless correlations for 
continuous multiphase reactors characteristics 
 

1.1 Bibliographical review  

1.1.1 Existing ANN dimensionless correlations  
There are several types of G-L-S reactors. For most of them, researchers have tried 

to propose empirical correlations (data driven models) to predict their requisite 

characteristics. Although there are many such models, we limit our attention to neural 

network correlations, and, in this first chapter, only to those neural network models whose 

inputs are dimensionless  Buckingham groups computed from the original variables 

describing the G-L-S. The more consistent databases, containing experimental observations 

in different types of reactors, were available to researchers when developing such predictive 

neural network models. The Laval University heritage is among the most comprehensive 

data sets in the world concerning the hydrodynamics and mass transfer characteristics of 

multiphase reactors. A bibliographical review of publications containing neural network 

modeling combined with dimensionless analysis will be given for different types of reactors 

and their modeled characteristics. As this review is mostly intended to inventory such 

correlations and not describe them in detail, please consult the Notation section of this 

chapter for details on some dimensionless groups appearing in the text. For the sake of 

simplicity, these modes are given only in a generic form, and sometimes may have identical 

variables as arguments. However, the models certainly differ by the values and the number 

of internal parameters (weights).    

Π

 

Concurrent down flow fixed bed reactor (trickle beds) 

The first type of reactor we considered was the concurrent down flow fixed bed reactor, 

also known as the trickle bed. The pressure drop prediction in these systems is important, as 

the throughput and the mass-transfer coefficients depend on the energy supplied, which is a 
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function of the pressure drop. Iliuta et al. (1999b) developed an ANN correlation for the 

dimensionless liquid pressure drop LΨ  for both a high interaction regime (HIR) and low 

interaction regime (LIR). The equations of this model for LIR and HIR respectively are:  

),,,,Re,(Re ***
bLLLGLL SXGaWef=Ψ        (1.1) 

 and  

),,,,Re,(Re ***
bGLLGLL SXGaWef=Ψ       (1.2) 

A phenomenological model to predict the pressure drop for the LIR regime was given by 

Holub et al. (1992) and extended by Iliuta et al. (1999b). Phase interaction factors included 

in these phenomenological models were evaluated by Iliuta et al. (1998, 1999b) using 

ANNs. This hybrid model combines the robustness of physical models with neural network 

accuracy, as shown by Dudukovic et al. (2002).  

Another characteristic of interest in the concurrent packed beds is the liquid holdup (εl), 

which represents the fraction of the reactor space occupied by liquid phase. If the bed 

particles are porous, as will be the case of most trickle-bed reactors, the total liquid hold-up 

will be the sum of the internal (liquid held in pores of the catalyst) and external holdup. The 

external contribution can be divided into static, or residual, holdup (εls) and dynamic, or 

free-draining holdup (εld). Using the database of Laval University (F.L./B.G.), Iliuta et al. 

(1999b,c) developed an ANN correlation for the total liquid holdup for both low and high 

interaction regimes. The correlation for LIR has the form:  

),,,,Re,(Re ***
, bGLLGLtL SXGaWef=ε       (1.3) 

The error of this model (measured as the average absolute relative error AARE) is lower 

than any of the other models in HIR, according to these authors. For the low interaction 

regime, it is however comparable with the error of other correlations. The overall gas-liquid 

mass transfer coefficient KLa can be related to the individual gas-side and liquid-side mass 

transfer coefficient as: 
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akakHaK LgAL

111
+=         (1.4) 

Same authors in Iliuta et al. (1999a) published several ANN models to predict the mass 

transfer parameters. The predicted variables in these models are: ShL
*, ShG

* (the modified 

Sherwood numbers of phases) and a (the interfacial area) function of several dimensionless 

numbers. The correlations are: 

),,,,,(Re bLLGLLL SScMoXWefSh =       (1.5) 

),,,,,(Re bGGGLLG SScXWeStfSh =       (1.6) 

),,,,,Re,(Re bmGLLGL SEoXFrWefa =       (1.7) 

The above relations are valid for both LIR and HIR.  

 

Counter-current trickle-beds 

The second type of reactor for which dimensionless neural network correlations are 

encountered is the counter-current trickle-bed. One basic design parameter here is the 

loading capacity. It designates the smallest superficial gas velocity, which, at a given 

superficial liquid velocity “causes a discernable build-up of liquid” (Leva, 1953). The first 

ANN correlation that predicts the loading capacity in these systems was presented by Piché 

et al. (2001c). The correlation is given for the Lockart –Martinelli parameter that embeds 

the gas superficial velocity at loading:  

),,,Re,( BLLL SStGaf φχ =         (1.8) 

A second important characteristic of counter-current systems is the flooding capacity, or the 

maximum amount of fluid the bed can hold without overflowing. There are many given 

definitions of this phenomenon, which were presented by Silvey and Keller (1966), but it is 

basically the operating point beyond which a tiny increase in gas velocity produces a 

substantially important change in the pressure drop and liquid hold-up in the column. 



12 
 
Recently, an ANN correlation for the gas superficial velocity at flooding (UG,Fl) was 

proposed by Piché et al. (2001a). The correlation is given for the Lockart-Martinelli 

parameter that includes the gas superficial velocity at flooding point:  

),,,Re,( BLLL SStGaf φχ =         (1.9) 

Piché et al. (2001d) proposed a correlation for the dimensionless frictional pressure drop: 

( )χ,,,,Re,,Re BLLLGGLGG SStGaGaff =       (1.10) 

and  for the liquid hold-up (2001e) : 

( LLLGGT OhFrStFrfh ,,Re,,= )        (1.11) 

The gas to liquid mass transfer coefficients were correlated using the same approach by 

Piché et al. (2001b) via the dimensionless gas (or liquid) film Sherwood number (ShL/G) as 

a function of six dimensionless groups: Reynolds (ReL), Froude (FrL), Eotvös (EoL), the gas 

(or liquid) Schmidt number (ScL/G), the Lockhart-Martinelli parameter (χ), and a bed-

characterizing number (K). Using the ANN correlation and the two-film theory, a 

reconciliation procedure was implemented, resulting in better predictions of the gas (or 

liquid) overall volumetric mass transfer coefficients.  

 

Concurent up-flow packed beds 

The last type of fixed bed reactors that we will discuss is the concurrent up-flow packed 

beds. The frictional pressure drop in these systems has been investigated by a number of 

researchers, including Turpin and Huntington (1967), who used the friction factor approach, 

and Colquhoun-Lee and Stepanek (1978), who suggested that the two-phase pressure drop 

data should be correlated with a single-phase energy dissipation of liquid. Larachi et al. 

(1998) proposed the following ANN correlation:  
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)( LLGLLLLG MoStFrXff ,Re,,,=         (1.12) 

between the gas-liquid frictional pressure drop and the physical properties of the phases 

embedded into the dimensionless numbers given in (1.12).   

Gas and liquid holdup are also important design parameters of three-phase fixed-bed 

reactors with concurrent up-flow. If one variable is known, the other can be estimated from 

the equation:  

BLG εεε =+           (1.13) 

An ANN correlation for the external liquid holdup was determined by Bensettiti et al. 

(1997): 

( LLmLGbLLL FrEoSCaXf /Re,,Re,,,= )ε       (1.14) 

The above bibliographic review contains most of the ANN correlations built for counter-

current trickle-bed, concurrent trickle-beds, and fixed-beds with concurrent up-flow. Some 

correlations are compared with other empirical and / or phenomenological models in Iliuta 

et al. (1999d).  The neural network models published by these authors have multi-layer 

perceptrons with logistic sigmoid transfer functions in the hidden and output nodes. 

Weights were determined using the computer software developed by Cloutier et al. (1996), 

which uses Broyden-Fletcher-Goldfarb-Shanno's method (Press et al., 1989) to minimize 

the sum of squared prediction errors on a training data set. One way to verify that the model 

retained the main tendencies in data and was not overtrained was based on monotonicity 

tests simulating the output of the model in some ranges of the dimensional variables.  The 

authors also had to select the most suitable dimensionless numbers to use as networks input 

vector. 

The chemical engineering literature presents same kind problems for other types of 

chemical reactors. Jamialahmadi et al. (2001) developed a dimensionless RBF (radial basis 

function) neural network correlation for the bubble diameter in bubble columns. These 

authors did not devise the resulting model to be used as a predictor for the respective 

characteristic (the bubble diameter), as was the case in previous research; instead, they used 



14 
 
the ANN model to generate artificial data (input-output pairs) to fit an imposed form 

empirical correlation, which was less accurate, but still gave a low prediction error. In all of 

these studies, however, the ANN was checked to see if it would predict smooth monotonic 

outputs when some dimensional variables (here, the liquid viscosity and surface tension) 

composing the dimensionless inputs of the ANN (here Bond, Froude, and Galileo numbers) 

were increased.    

1.1.2 Study target problematic and current procedures  
Until recently, identifying the most relevant ANN model’s inputs, generally dimensionless 

Buckingham Π groups, has been a laborious trial-and-error procedure. It consists of 

choosing an arbitrary combination of inputs and training on a learning data set several ANN 

models differing by the number of nodes in their hidden layer, J. The resulting models are 

further tested on a validation data set to evaluate their generalization performances. The 

ANN model to be retained among all the simulated ones is the one that yields the smallest 

relative error on both training and generalization data sets. Thence, the topology of the 

model is thoroughly tested for phenomenological consistency within the valid range of the 

working database to determine whether it exhibits the expected trends. Any inconsistent 

behavior disqualifies the choice.  

Until now, this time-consuming approach was not automated because the human expertise 

regarding the phenomenological consistency was somehow difficult to formulate 

mathematically into an optimization criterion. Nothing ensures that this blind-search 

approach can successfully identify the most relevant set of dimensionless inputs. This is 

especially true in multiphase flow context, where the dimensionless groups abound and the 

combinatorial problem is explosive. Finding the best ANN model would become a matter 

of chance. Assuming agreement between an ANN model and the expected physical 

evidence can be assessed automatically using an expert-system of rules, the trial-and-error 

method would become suitable for a computer algorithm. However, the main problem 

would remain: how do we find the fittest input combination when the evaluation of all the 

combinations is CPU time-consuming?  
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Genetic algorithms (GA) have been successfully applied to such combinatorial problems 

where high quality solutions within reduced search times are needed. Based on the 

mechanisms of natural selection and natural genetics, GAs can extract the information from 

evaluated input combinations, i.e., parent specimens, while assuring good exploration of the 

search space (Goldberg, 1989). GAs have also been combined with ANNs in several 

different ways. GAs have been used to generate i) the ANN connectivity weights (Morshed 

et al., 1998), ii) the ANN architecture (Blanco et al. 2000), and iii) ANN architecture and 

weights simultaneously (Gao et al., 1999)  

Problem statement 

The dimensionless neural network models identification given the discussion so far could 

be summarized simply as the following:  

Having, as in Table 1.1, a sufficiently large database (N occurrences) in the form of 

dimensionless Buckingham Π groups, where M candidate Π groups, CI1, CI2 … CIM 

(N>M >> 1) embed redundantly the physical and operational parameters stemming 

from a process, find an ANN model that uses, as inputs, only a subset of m pertinent 

Π groups among the M ones, in order to predict an output y, a key process 

characteristics. The three-layer ANN model to identify, in the case of a single 

output, is described by the following set of equations (using normalized data and 

sigmoid activation functions): 
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where: 
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m is the number of inputs, I  

for 1 ≤ i ≤  m,     Ii = CI S(i) ∈ {CI1,CI2,…CIM} with S, an m-input selector (sub-set). 

J is the number of hidden neurons in the middle layer; Im+1= HJ+1 =1 are the biases; 

wj and wij are the connectivity weights. 

The models described by these equations should fulfill the following requirements:  

i) Accuracy: The model must be very accurate, preferably to the level of experimental 

error with which the output is measured. 

ii) Phenomenological consistency: The model to be built must preserve, at least within 

the database-documented domain, the expected trend of the output (monotonic 

increasing or decreasing) in accordance with all known aspects of the process physics. 

iii) Low complexity: The ANN model must preferably involve a minimal number of 

inputs (m Π groups) and hidden neurons (J), resulting in a correspondingly minimal 

number of connectivity weights ( the 1J2Jm +⋅+⋅  neural fitting parameters). 

Table 1.1 Typical structure of the database for applying the GA-ANN methodology 
 

Candidate Inputs 

(independent variables) 

Output 

(dependent variable) 

CI1 CI2 … CIM y 

CI1,1 CI1,2 … CI1,M 1y  

CI2,1 CI2,2 … CI2,M 2y  

… … … … … 

CIN,1 CIN,2 … CIN,M Ny  
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1.2 Genetic algorithm-based procedure to develop dimensionless 
ANN correlations matching phenomenological prior knowledge   

1.2.1 Methodology description 
The present contribution is intended to provide an integrated GA-ANN methodology to 

facilitate the development of an ANN regression model (three-layer perceptron type) on a 

given problem. The GA implemented in this study was designed to identify the most 

relevant ANN input combination resulting in a neural model. This is done by minimizing a 

multi-objective criterion that includes ANN prediction errors on the learning and 

generalization data sets, and, most importantly, a penalty function that embeds the 

phenomenological rules accounting for ANN model likelihood. The integrated GA-ANN 

methodology is illustrated on a comprehensive liquid holdup database of counter-current 

randomly-dumped packed towers with the aim of finding the best liquid hold-up ANN 

correlation.  

A typical approach in solving multi-objective problems consists in optimizing a primary 

response function while turning the other functions into constraints (Viennet et al., 1995). 

The genetic algorithm practice, on the other hand, consists of optimizing a composite 

objective function which sanctions violations of the restrictions by means of the penalty 

method (Goldberg, 1989). In our problem, we combined approaches. Table 1.2  reports, in a 

hierarchical order, the parameters to be identified and how their searches have been 

managed and integrated. 

As the number of inputs, m, and the number of hidden nodes, J, must be low to minimize 

model complexity, they have been varied by discrete sweeps in selected ranges. m has been 

varied in the range [4;6] and J has been varied in the range [2m-1;2m+3], as suggested by 

Maren (Maren et al., 1990, pag. 240). The determination of the input selector S consists of 

the identification of m pertinent inputs among M ones. This proves to be a tedious task; the 

search space of combinations is large, and the solution S must meet both phenomenological 

consistency and accuracy of the resulting ANN model. 
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Table 1.2 Parameter identification strategy 

Parameter to 
identify 

Search method Objective function 

m    Trial and error in the range 
[mmin, mmax] 

Expert decision 

 S   Genetic algorithm, using 
binary bit strings 

           Multi-objective Fitness Eq.  
     

  (1.19) 

  J  Trial and error in the range 
[Jmin, Jmax] 

           Multi-objective Criterion Eq.  
     

  (1.17) 

   wj ; wij BFGS variable metric 
method 

 

Least square on prediction errors 

( )∑
=

−=
TN

k
kk yySSE

1

2ˆ  

m, number of inputs; S, input selection operator; J, number of hidden nodes;  wj, wij, connectivity weights;   
NT number of training samples 

 

There are few search techniques-- such as: enumerative technique, random walk, simulated 

annealing, and GA-- that find solutions over discrete domains using only the value of the 

function in different points of the domain. Because of its robustness (Goldberg, 1989) and 

natural appeal, the GA technique is employed in this work for searching the best-input 

selector S. The connectivity weights wij and wj are adjusted by minimizing the sum of 

squares of the prediction errors on part of the data, referred to as the training data set, using 

the Broyden-Fletcher-Goldfarb-Shanno's variable metric method (Press et al., 1989). The 

remaining data are used to evaluate the generalization capability of the ANN model. This 

step has been processed with a slave software, NNFit (Cloutier et al., 1997). The integrated 

GA-ANN procedure used to handle the problem is presented in Figure 1.1 and will be 

detailed in the following sections. 

 

 



19 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expert selection of the best  
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                                              Evaluate   Fitness 
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- Reproduction  
- Modified crossover 
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No 

Figure 1.1 Logical flow diagram for the GA-ANN methodology. 
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1.2.1.1 GA Encoding solutions 
The GA approach requires a string representation of the m-input selector, S. In our context, 

S is a selection of indices representing some of the candidate input variables of the database 

sketched in Table 1.1. The encoding modality chosen was M-sized bit strings, allowing 

only m “one bit” values per string (Figure 1.2). In this binary representation of solutions, M 

corresponds to the total number of candidate input variables (or input columns) in the 

database (Table 1.1). The “1” at a given rank of the string stands for a selected input 

occupying the same rank in the database. Conversely, the “0” stands for an input variable 

being discarded.  

 

 

 

 

 

 

 

Candidate inputs of Table 1.1

Binary string m-input selector S

M 5321 4 ……    p    

0 1110 0 ……   1     

Selected inputs:           First input    S(1)=2 

 Second input           S(2)=3 
       

 Third input             S(3)=5 
        ……… 
  m-th and last input         S(m) = p 

Figure 1.2 Bit string representation of the m-input selector, S. 

 

1.2.1.2 Multi-objective criterion and fitness function 
To identify the best input selector S and its related ANN model fulfilling the requirements 

i)-iii) of Section 1.1.2, the composite criterion Q was formulated: 

)(min)(
maxmin

SS JJJJ
QQ

≤≤
=         (1.17) 

with 
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)]([)()(  )(QJ SSSS JGJJ ANNPPCANNAAREANNAARE  ⋅ + ][ ⋅ + ][⋅= Τ γβα  (1.18) 

In Eq. (1.18) AARE[ANNJ(S)]T is the average absolute relative error the ANN (having J 

hidden nodes) achieves on the training data set for a given input combination (or specimen) 

S. Equivalently, AARE[ANNJ(S)]G measures is the accuracy of the ANN model on the 

generalization data set remaining after optimizing the neural connectivity weights using the 

training set. The composite criterion of a penalty for phenomenological consistency, 

PPC[ANNJ(S)] ideally guarantees that the model will exhibit the behavior expected of the 

simulated output. By “expected behavior” we mean an ensemble of prescribed behavioral 

rules known to govern the phenomenon of interest, and which are embedded, as will be 

shown in §1.4.2, in the term PPC[ANNJ(S)]. Ideally, the penalty term is zero if the 

topological features of the ANN function meet all the rules. The role of the weighting 

multipliers α, β, and γ is to enable more flexibility in targeting models that fit better the 

training data set or finding models that generalize better while still satisfying, through the 

PPC term, the phenomenological consistency at various degrees. The choice of α, β, and 

γ values is described in the next sections. The stepwise construction of the criterion Q(S) is 

shown in Figure 1.3. 

In the genetic algorithm practice, fitness maximization is preferred to the classical 

minimization problem. Hence, the better the solution, the greater is its fitness value. Since 

every minimization problem can be turned into a maximization problem, the composite 

criterion Q(S) can easily be switched into a fitness function using the simple linear 

transformation (Friese et al., 1998): 

)()( max SS QQCFitness −⋅=         (1.19) 

where C is a conversion coefficient greater than 1 to ensure positive fitness function values, 

and Qmax is the maximum value of Q among the population having MAXPOP specimens, S. 
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hidden nodes 

Test all ANNs for 
phenomenological 
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QJ ( S )= α AARE[ANNJ]T + β AARE[ANNJ]G + 

γ PPC[ANNJ]
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training data set  
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ANNs having J 

Choose one m-input 
selector, S  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Stepwise construction of the composite criterion, Q(S). 

 

1.2.1.3 Building the generations 
Starting with a null M-sized string (all bits are zero), each first-generation specimen was 

built by turning randomly and equally probable m zeroes among the M into ones. The 

operation was repeated MAXPOP times. A uniform random number generator based on the 

Knuth subtractive method (Press et al., 1989) was used throughout this work. Once the 

initial population was available, it was allowed to evolve in order to better identify 

specimens that maximized the fitness function Eq. (1.19). The evolution process rested on 
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the so-called reproduction, recombination (crossover), and mutation operators pioneered in 

the area of artificial systems by Holland (1975). 

Reproduction operator 

The purpose of this operator is to ensure that the fittest specimens perpetuate through off-

springs and/or have greater chances to be found in the next generation. Numerous schemes 

are known which introduce various levels of determinism into the selection process. Among 

them, three have been tested in this work: the roulette wheel selection with elitism, the 

stochastic remainder selection without replacement, and the stochastic remainder selection 

without replacement with elitism (Goldberg, 1989; De Jong, 1976). This third method was 

the one retained for our genetic algorithm. With this method, best individuals are receiving 

a number of identical copies in the next generation. The number is a function of its fitness; 

however, even genetically inferior individuals could be duplicated in the next generation. 

Modified Recombination Operator 

No matter how perfect, reproduction does not create new better specimens; recombination 

and mutation do. The recombination operator combines useful features from two different 

specimens, yielding offspring. For instance, classical two-point crossover recombination – 

taking a random start point and length for the selected sub-string – would produce from two 

parent specimens (A nd B) two new children by simply interchanging a selected region in 

specimen A with that corresponding in specimen B. Though this recombination proves 

efficient for unconstrained GAs (Frantz, 1972; De Jong, 1976), it was unsuitable in our 

context because the compulsory m one-bit values in the specimens were not automatically 

preserved during parent-offspring transition. The crossover operator was modified to ensure 

conservative passage with fixed m one-bit values in the offspring. This was done by 

splitting the crossover operation into two distinct steps. 

 

 

 



24 
 
First step 

A 0 1 0 0 1 0 1 0 0 1               

 (4 one-bit values)  

  

 

B 1 0 

 

1 0 1 0 0 1 0 0  Î  C 1 0 0 0 1 0 1 1 0 0

 (4 one-bit values) (4 one-bit values) 

 

Second step 

A 0 1 0 0 1 0 1 0 0 1  Î  D 0 1 0 0 1 0 1 1 0 0

 (4 one-bit values) (4 one-bit values) 

  

 

B 0 1 1 0 1 0 0 1 0 0               

 (4 one-bit values) 

1 0 1 0 0 0 1 0  Î  C 0 1 0 0 1 0 0 0 1 0

 (4 one-bit values) (3 one-bit values) 

Figure 1.4 Successful trial to produce 4 one-bit valued specimens in the modified two-step 
two-point crossover 

 

A 0 1 0 0 1 0 1 0 0 1               

 (4 one-bit values) 

   

 

B 0 1 

 

Figure 1.5 Unsuccessful trial to produce a 4 one-bit valued specimen in the first step of the 
modified two-point crossover 
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In the first step (Figure 1.4), a sub-string in specimen A (with random length and start 

point) was selected and transferred in specimen B at the same location. The resulting child, 

specimen C, was retained, provided it possessed m one-bit values like his parents (Figure 

1.4) and it was distinct. If not (Figure 1.5), the first step was repeated until this condition 

was satisfied or the number of trials exceeded a given value. The second step was then 

resumed to create a second offspring, specimen D (Figure 1.4). This step was identical to 

the first one, with the exception that now a sub-string in specimen B was transferred into A. 

The recombination operator acting on the whole population of specimens issued from the 

reproduction: 

• Randomly split in two equal sets the population obtained at the end of the 

reproduction step. 

• Took all pairs of specimens having the same rank in each part and simulated a coin 

toss weighted with the crossover probability pc. 

• Applied modified crossover if the coin showed “true.” 

Modified Mutation Operator 

Mutation prevents permanent loss of useful information and maintains diversity within the 

population. A specimen is altered by mutation with a low probability pm. Classical mutation 

consists in changing the value of one single bit at a randomly chosen position in the string. 

As in the case of crossover, classical mutation is not m one-bit conservative. Nevertheless, 

to allow new features to be introduced in the specimens, a two-step mutation, namely 

mutation and repair–mutation, was defined to maintain the m-one bit structure of the 

strings. The repair–mutation merely reverses mutation by acting on another randomly 

chosen opposite bit value in the same specimen to restore the constant amount of ones in 

the string. For example, if mutation is 0 → 1, then anti-mutation is 1 → 0 on a different 

randomly chosen 1-bit value in the specimen (Figure 1.6). Below is a summary of 

operations used when applying modified mutation: 

• A coin toss weighted with a mutation probability pm for each bit is simulated for all 

the MAXPOP specimens of the population. 
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• If the coin shows “true”, mutation and anti-mutation are applied; we then skip to the 

next specimen, authorizing just one operation per specimen. 

 

A 0 1 0 0 1 0 1 0 1 0    B 0 1 0 1 1 0 1 0 1 0

 

B 0 1 0 1 1 0 1 0 1 0    C 0 1 0 1 1 0 0 0 1 0

 
Randomly chosen 
one valued bit 

repair- mutation 

 

mutation

 

Figure 1.6 The m-conservative modified mutation: case of “0 → 1” mutation followed by 
repair–mutation 

 

The mutation probability must be kept very low; excessive mutations could erase useful 

parts of the combinations, rendering the search directionless. 

General remarks on the constrained GA 

The parameters needed to run a GA are the population size, MAXPOP, and the crossover 

and the mutation probabilities, pc and pm. The choice of these parameters is important for 

the GA global efficiency. The parameter set MAXPOP=50, pc=0.6, pm=0.003 was used in 

this work; it was inspired by the general recommendations of De Jong (1976) and was 

adapted for the peculiarity of our constrained GA by trial and error procedures. As the 

number of genes per specimen is 27, there is a 27⋅0.003=8.1% chance that an individual 

will undergo a mutation.  

Regarding the issue of constraining the specimens to m non-null bit strings, one could have 

argued that penalty terms in the fitness function would prevent larger m-input combinations 

to dominate the population. However, from an efficiency standpoint, unconstrained GAs 
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would have been less appropriate. One obvious reason is that searching among  

solutions (m

∑
max

min

m

m

m
MC

∑
max

min

m

m

m
MC

min>1 and mmax<M) is far more efficient than searching among the whole 

 combinations. Moreover, inclusion of penalty terms in the objective function is 

desirable only if, within the interrogation space, the feasible regions are larger than the 

unfeasible ones (Lohl et al., 1998). The fact that in our case is superior to  

means that unconstrained GAs would have spent most of the time evaluating unusefull 

solutions. Combinations exceedingly large or small are also unusable. Very low m values 

do not yield accurate ANN models, whereas if m is too large, the resulting ANN models are 

cumbersome. What is considered low and what is considered a high m value is problem-

dependent; m has to be specifically tailored, as explained in Figure 1.1and Table 1.2 . 
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1.2.2 Methodology validation on liquid hold-up modeling 
The proof-of-concept of the integrated GA-ANN methodology will be illustrated using a 

comprehensive database concerning the total liquid hold-up for counter-current gas-liquid 

flows in randomly packed towers. Recall that the goal behind this approach is to identify 

the liquid hold-up ANN model that best satisfies the three requirements summarized in 

Section 1.1.2. The data mining role of the genetic algorithm consists in interrogating a 

broad reservoir of M input vectors to enable the extraction of an elite of m inputs best 

mapping, through ANN, the (hold-up) output. 

1.2.2.1 Brief overview of the liquid hold-up database 
A large liquid hold-up database (1483 experimental points) set up in a recent study (Piché 

et al., 2001e) was re-organized by converting all the physical properties and operating 

parameters relevant to the modeling of liquid hold-up into M = 27 dimensionless 

Buckingham Π groups (or candidate inputs) according to Table 1.1 format. These groups, 
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listed below, cover all possible force ratios or external effects the liquid hold-up might 

experience in randomly packed beds: 

liquid phase  Reynolds (ReL), Blake (BlL), Froude (FrL), Weber (WeL), Morton (MoL), 

Eotvos (EoL), modified Eotvos (Eo’L), Galileo (GaL), modified Galileo (Ga’L), Stokes (StL), 

modified Stokes (St’L), Capillary (CaL), and Ohnesorge (OhL). 

gas phase  ReG, BlG, FrG, GaG, Ga’G, StG, and St’G. 

solid phase  Wall factors K1, K2, and K3, bed parameters B, and SB. 

two-phase  Lockhart-Martinelli number (χ), Saberian number (Sa). 

Details of group definitions are given in the Notation section of this chapter. For  

convenience, here are the forces ratios that the most popular groups represent: Reynolds Ù 

inertia-to-viscous; Froude Ù inertia-to-gravitational; Weber Ùinertia-to-capillary; Morton 

Ù viscous-to-capillary, gravitational-to-capillary; Eotvos Ù gravitational-to-capillary; 

Galileo Ù gravitational-to-capillary, gravitational-to-viscous; StokesÙ inertia-to-

gravitational, gravitational-to-viscous; Capillary Ù viscous-to-capillary; Ohnesorge Ù 

viscous-to-capillary. 

The database has N = 1438 rows and M = 27 columns of candidate inputs. The best m-

inputs selector, S, to be identified must contain a minimum number of elements, m. It has to 

be found among all possible combinations of M = 27 input columns. To demonstrate how 

computationally laborious this task can be, the combinatorial size for m = 5, ca. 81 000 

combinations, would require 84 CPU days on a dual 800 MHz processor to identify the 

optimal ANN model using an enumerative technique. 

1.2.2.2 Evaluation of the PPC term and choice of α, β, γ multipliers 
To run the GA-ANN procedure, the penalty for phenomenological consistency appearing in 

the composite criterion Eq. (1.18) needs to be formulated. As mentioned earlier in 

Section1.2.1, this term must embed some prescribed behavioral rules, which verify the 

behavior of the ANN model. Such prescribed rules are inferred after tedious expert-system 

analyses that combine i) thorough inspection of the trends exhibited by the liquid hold-up in 
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the database, ii) consentual observations from the literature, iii) any qualitative and 

quantitative information revealed from first-principle based phenomenological models in 

the field, such as the Billet and Schultes liquid hold-up models in the pre-loading and the 

loading regions (Billet et al., 1993; 1999). As a result, the following six monotonicity rules 

can be stated in the form of inequalities (for symbols, see the Notation section): 
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The total liquid hold-up (the fraction of reactor volume occupied by the liquid phase) will 

always increase with the liquid throughput (uL). The same kind of impact has the increase in 

the velocity of the gas stream (uG) flowing upwards counter-current with the liquid, etc. 

The match of the gradient information was verified at the corners of the surface, 

where is the output of the trained neural network model, and v is one of the remaining 

variables (ρ

),(ˆ vuy G

ŷ

G, ρL, σL, uL or µL). For the six physical variables ρG, ρL, σL, uL, µL and uG, the 

gradient conditions were considered fulfilled if they proved true simultaneously at the two 

points near the edges of the corresponding valid intervals. In order to better distinguish 

between models, the gradient conditions were equivalently recast into ten rules: 
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Each index indicates the points where the gradient was evaluated: 1 at the beginning and 2 

at the end of the valid range of each physical variable, while “&” stands for the logical 
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AND. A scale from 0 to 10, measuring disagreement with the monotonicity tests, was then 

established to quantify the rules violated by an ANN model. The PPC term is expressed 

simply as the number of rules transgressed by an ANN having J hidden nodes and using 

input selector, S. If no rule was transgressed by the ANN model, PPCj[ANN(S)] = 0, and 

the model had no penalty. Conversely, if the model violated all rules, the penalty was the 

maximum, i.e., equal 10. 

The multipliers α and β, i.e., the weighting coefficients of the training and generalization 

AAREs in (1.18), were assigned the values 0.8 and 0.2, respectively. These values 

corresponded to the splitting of the initial database into training and generalization sets. 

Several values for the penalty coefficient γ were tested, and a value of 0.05 was then 

retained. Basically, as PPC lies in the interval [0,10] the value  γ=0.05 gives to the PPC 

term an importance of 0.5 on a scale of 0 to 1. 
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Figure 1.7 Best and population averaged criterion Q(S) in a typical GA run searching ANN 
models to predict liquid hold-up: for m = 5,  JMin=9, Jmax= 13. (Computational system 
specification: dual CPU speed 1000 MHz, Operating system Linux, computation time 8 
hrs.) 
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1.2.2.3 GA optimization through generations 

As an example of the evolution of the performance of a population through successive 

generations, Figure 1.7 reports both the evolutions of the average and the minimum criteria 

of the population of individuals. The average criterion measures how well the population is 

doing, as well as how fast it is converging to the optimal solution. The minimum criterion 

indicates how well the GA has performed in finding a minimum-cost solution (Carroll, 

1996). In Figure 1.7, the sharp decrease occurring at the 22nd generation is related to the 

first creation of a fully phenomenologically-sought ANN model (i.e., PPCj[ANN(S)] = 0). 

1.2.2.4 Results and discussion 
The exposed methodology implies a systematic search with GA of ANN models for several 

values of m, i.e., number of nodes in the ANN input layer, with the objective of choosing a 

model with the least complexity, full phenomenological consistency, and the best accuracy. 

A search was conducted by launching GA runs for m = 4, 5, and 6. The evolution through 

generations of the best criterion is illustrated in Figure 1.8. The first occurrence of a full 

phenomenological consistency model occurred, for m=4 and 6, after 3 and 6 generations 

respectively. After 22 generations, the penalty term, PPC, became zero for the three cases. 

Then the criterion reduced to the averaged sum of ARRE on both training and 

generalization data sets. The ANN models presented lower criterion values with increasing 

m. 

Since there was no significant improvement in the prediction performance between m=5 

and m=6, we retained the less complex model, i.e., that for m=5. The best ANN model 

found with m = 5 involves J=12 hidden neurons and expressed as a function εL =ANN(BlG, 

WeL, St’L, K2, K3). It involves significant dimensionless numbers describing the liquid, 

gas, and solid phases, thus making the model appropriate for predicting liquid hold-up for 

different types of beds and fluids. The model AARE is 12.8% on the whole database; the 

standard deviation is 11.7 %. The model requires only 85 connectivity weights, and most 

importantly fulfills all imposed 10 rules given by Eqs. (1.26)-(1.35). 
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Figure 1.8 Evolution of best criterion for various numbers of ANN inputs, m. 

 

The parity chart of the ANN model, shown in Figure 1.9, shows agreement between 

experimental and predicted liquid hold-up data, with also almost uniform data scatter 

distribution around the parity line. The performance of the model identified using the 

integrated GA-ANN procedure was slightly better than that reported by Piché et al. 

(2001e). 

Due to the methodology design and the GA's population-based approach, the search process 

is inherently parallel. Implementation of the suggested integrated GA-ANN methodology 

on parallel processing computers renders the development of ANN models extremely fast, 

even using very large databases. This more efficient and automated procedure of 

dimensionless ANN identification allows, therefore, in the same time, feature selection 

(FS), as it optimizes the inputs of the network; model design (MD), as it finds a good 

architecture and learns the weights; and a check for prior knowledge respect (PK). Of 

course, in terms of model design, we use the classic well-known approaches such as trial 

and error for architecture and BFGS method for weights learning. 
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Figure 1.9 Parity chart of the ANN model εL = ANN(BlG, WeL, St’L, K2, K3) for the 
learning (•) and the generalization (○) data sets. Dotted lines represent ± 30% envelopes. 

 

Contribution here in terms of PK is the use of tests to verify the prior knowledge matching 

and to avoid overfitting. In terms of FS the originality also lay in the fact that the genetic 

algorithm uses modified genetic operators to keep constant the number of inputs per 

specimen. As the monotonicity property of the learned function was evaluated by numerical 

test at the edges of the definition domain for the involved dimensional variables, it would 

be reasonable to perform a study to determine representativeness of such tests of 

monotonicity likelihood for the neural network model. 
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1.2.3 Reinforcing the match of prior knowledge: Application to pressure drop 
modeling   
 

In this section, the prior knowledge issue is more thoroughly addressed. Pitfalls in the 

standard procedure to guarantee adherence to PK of the ANN models are highlighted. A 

more robust procedure is developed and tested thoroughly to identify highly consistent 

ANN models. The material presented in this section will be organized as follows: 

First, some basic phenomenological consistency requirements that an ANN model must 

fulfill are defined. For illustration purposes, the database of two-phase total pressure drops 

in counter-current packed beds (Piché et al., 2001d) has been chosen. The deficiency of the 

standard procedure is evaluated on the pressure drop correlation developed therein. 

Secondly, an elaborate procedure assessing the PK match is proposed; a pseudo algorithm 

for its implementation is detailed in Appendix 1. Thirdly, the capability of the GA-ANN 

methodology described in (Tarca et al., 2002) is upgraded by embedding the new PK match 

evaluation algorithm. This leads to high PK performance ANN models. Finally, a new 

ANN pressure drop correlation is presented and its performances discussed. Later in this 

chapter, a model that matches the prior knowledge will be alternatively called 

phenomenological consistent (PC).  

 

1.2.3.1 Database and phenomenological consistency 
The primary database used in this study is the one described in (Piché et al., 2001d), 

containing N = 5005 pressure drop records in countercurrent randomly packed towers. The 

properties of the gas, liquid, and solid phases, and the measured pressure drops are 

compiled column-wise in the form of a 2-D matrix. 

A set of 28 dimensionless groups was selected and computed for each row in the primary 

database. These dimensionless groups were those likely to contain the main variability 

within the database while expressing all the possible force ratios in play. The set of 

dimensionless numbers selected and presented in Table 1.3 is similar to the one listed in 

Section 1.2.2.1. For the sake of simplicity, they will be designated hereafter by Ni with i = 1 
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to 28. Afterwards, a working database was constructed in which appear, in a row-to-row 

correspondence, the calculated values of the dimensionless groups, together with the value 

of the pressure drop we wanted to model. Hence, the working database simply maps the 

primary database in a space with dimensionless variables. The working database was then 

split in two fractions, the first being referred to as the training set (NT = 3503 records), and 

the second as the generalization set (NG = 1502 records). However, with respect to the first 

study (Section 1.1) a larger fraction of data was used for generalization (30% instead of 

20%). 

The basic phenomenological consistency requirements of an ANN model that predicts the 

pressure drop were formulated after analyses that combined: (i) consentual observations 

from the literature and thorough inspection of the trends exhibited by the pressure drop in 

the primary database (Piché et al., 2001d) and (ii) any qualitative or quantitative 

information revealed by the fundamental models (Billet et al., 1999; Maćkowiak, 1991). 

The consentual PC requirements can be formulated as: 
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Ideally, the simulated ANN pressure drop output is a monotonically increasing function of 

each one of the five testing dimensional variables. Practically, due to the problem of 



37 
 
overfitting and local poor quality of some measured data, a model could fail to fulfill Eqs. 

(1.36)-(1.40) gradient conditions simultaneously in the vicinity of some data points.  

Charts illustrating that the gradient conditions (or PC requirements) can be satisfied at least 

over some sub-domains in the database usually accompany several ANN correlations 

published in the field (Piché et al., 2001d; Larachi et al., 1999). Typically, the search 

utilized was conducted as follows: when a gradient condition is tested with respect to a 

particular dimensional variable, all the other variables are assigned values corresponding to 

a particular point in the primary database. 

If all the gradient conditions are satisfied, the model is considered phenomenologically 

consistent around the test point. Such an analysis, in the absence of an automated 

procedure, is cumbersome and time-consuming. It must be repeated several times in order 

to find the ANN models that best obey the gradient conditions in the domain and fit the data 

points. 

The question arising with this method is: will the ANN model exhibit the same type of 

trend when moving to a different test point? 

A search was been carried out using the GA-ANN methodology described in the previous 

sections, and three distinct ANN models, M1, M2, M3, were identified. All verified the 

gradient conditions Eqs. (1.36)-(1.40) in the vicinity of the test point I (Table 1.4) 

belonging to the database. These models differed mainly by the dimensionless groups used 

as ANN inputs. They were trained on the same training database and exhibited good 

prediction performances, as shown in Table 1.5. 
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Table 1.3 Candidate dimensionless input variables for pressure drop modeling  

 
i 1       2 3 4 5 6 7

Dimensionless 
Number Ni 

Reynolds 
(ReG) 

Blake 
 (BlG) 

Froude  
(FrG) 

Galileo  
(GaG) 

Mod. Galileo 
(GaG

m) 
Stokes (StG) Mod. Stokes (StG

m)

 
8       9 10 11 12 13 14

Reynolds 
(ReL) 

Blake  
(BlL) 

Froude  
(FrL) 

Weber 
 (WeL) 

Morton 
 (MoL) 

Eotvos 
 (EoL) 

Mod. Eotvos (EoL
m) 

 
15       16 17 18 19 20 21

Galileo (GaL) Mod. Galileo (GaL
m)     Stokes

(StL) 
Mod. Stokes 

(StL
m) 

Capillary 
 (CaL) 

Ohnesorge (OhL) Wall factor (K1)

 
22       23 24 25 26 27 28

Wall factor 
(K2) 

Wall factor (K3) Correction number 
(SB) 

Correction number 
(SB) (2) 

Correction number 
(SB) (3) 

Lockart-Mart. 
(χ) 

Saberian number 
(Sa) 

 
 
 

Table 1.4 Ranges of dimensional variables and data points I and II 

 uG 
(m/s) 

uL 
(m/s) 

ρG  
(kg/m3) 

µL 
(kg/m.s)

aT 
(m2/m3 ) 

DC 
(m) 

ρL 
(kg/m3) 

σL 
(N/m) 

φ 
(-) 

Z 
(m) 

µG 
(kg/m.s)

ε 
(-) 

Max 4.5E+0           9.0E-2 4.2E+1 4.5E-2 7.0E+2 9.1E-1 1.3E+3 7.4E-2 6.0E-1 3.0E+0 1.9E-5 9.9E-1
Average 1.1E+0           

            
           
           

1.3E-2 2.1E+0 5.8E-3 2.2E+2 5.0E-1 1.0E+3 6.5E-2 3.1E-1 1.6E+0 1.8E-5 7.9E-1
Min 5.0E-2 4.9E-4 9.2E-1 7.8E-4 5.7E+1 5.1E-2 8.1E+2 2.6E-2 5.6E-2 3.0E-1 1.4E-5 5.5E-1

Point I 1.0E+0 2.0E-2 1.2E+0 1.0E-3 1.7E+2 2.0E-1 1.0E+3 3.5E-2 9.1E-2 1.0E+0 1.8E-5 9.7E-1
Point II 5.6E-1 1.8E-2 1.2E+0 9.4E-3 1.8E+2 6.1E-1 1.2E+3 7.2E-2 4.3E-1 2.4E+0 1.8E-5 6.9E-1

 
 
 



39 
 

Table 1.5 Three ANN models with low AARE and phenomenological consistency in the vicinity of point I 

ANN model Dimensionless numbers used as 
inputs(*) 

AARET[%]  AAREG[%] AARET+G[%]

M1     N4, N8, N15, N23, N24, N28 19.9 20.5 20.1
M2     

     
    

N2, N13, N18, N25, N27, N28 21.2 21.6 21.3
M3 N4, N8, N15, N23, N24, N27 20.4 21.1 20.6

Piché et al. 2001d N1, N4, N8, N15, N17, N24, N27 19.6 21.1 20.0
* The significance of the input Ni is the same as in Table 1.3  
 
 

Table 1.6 Three ANN models with low AARE and phenomenological consistency in vicinity of most training points 

ANN model Dimensionless numbers used as 
inputs(*) 

AARET[%]  AAREG[%] AARET+G[%]

CP1     N13, N14, N19, N20, N24, N27 20.9 21.8 21.2
CP2     

     
N11, N13, N14, N19, N24, N27 22.3 23.3 22.6

CP3 N2, N10, N17, N18, N24, N27 22.4 24.2 22.9
* The significance of the input Ni is the same as in Table 1.3  
 
 
 

Table 1.7 The PCE values for the two series of ANNs found by using the classic and the new requirements  

 Models found with the classic 
requirements  

(low AARE and phenomenological 
consistency around a customary point)

Models found with the new 
requirements 

(low AARE and phenomenological 
consistency around the majority of points) 

Model M1   M2 M3 SP 
      

CP1   CP2 CP3
PCEG[%] 53.5 66.4 54.4 81.1 22.4 14.2 22.2
PCET[%]        53.6 66.8 52.8 80.5 23.4 14.5 21.9

PCET+G[%]        53.5 66.7 53.3 80.7 23.1 14.4 22.0
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For comparison, the Piché et al. (2001d) correlation that fulfills all five conditions at point 

I, was also tested. Figure 1.10 shows the simulated effect of liquid viscosity on the pressure 

drop predicted by models M1, M2, and M3 and by the model of Piché et al., (2001d) 

(labeled as SP) in the vicinity of point I when the liquid viscosity varied around its initial 

value. Though the predictions given by the four models were very distinct in some regions, 

all the models showed the expected increasing trend of pressure drop when liquid viscosity 

increased. 
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Figure 1.10 Phenomenological behavior of four ANN models around point I 
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Figure 1.11 Phenomenological behavior of four ANN models around point II 
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A viscosity-pressure drop plot similar to that in Figure 1.10, is drawn to illustrate the 

behavior of the same models around point II (Figure 1.11). Two of them must be 

disqualified (M3 and SP) for misbehaving in terms of viscosity impact on pressure drop 

around point II because rule Eq. (1.39) is violated. 

As the models were all phenomenologically consistent around point I, and not 

distinguishable by their AARE values on the training and generalization data sets (Table 

1.5), any one of them could have been chosen as a predictor. However, the predicted 

pressure drop values would be very different from one model to another. Near point II, M3 

and SP models presented abnormal gradient changes. Two main reasons could explain such 

a behavior: a) in the vicinity of point II, the database did not reveal the increasing pattern of 

pressure drop with viscosity b) overfitting of the data points occurred in that region. 

Overfitting occurs when a network too closely approaches some training points and has not 

learned to generalize new inputs. It produces a relatively small error on the training set, but 

gives a much larger error when new instances are presented to the network. Early stopping 

and regularization techniques are used to prevent overfitting. Early stopping uses two 

different data sets. The training set is used to update the weights, and the validation set is 

used to stop training when the network begins to overfit data. Regularization modifies the 

network’s performance function, the measure of error that the training process minimizes. 

By changing it to include the size of the weights, training produces a network that not only 

performs well with the training data, but behaves predictably when exposed to new 

instances. For details and examples of these anti-overfitting techniques, consult Tetko 

(1997), Prechelt (1998), and Gencay (2001).  

Models M1 – M3 and SP were built using early stopping. Table 1.5 shows that the 

difference in errors between learning and training data sets were marginal, suggesting that 

the training process was adequately stopped. The ANN models M3 and SP suggested the 

contrary, as they overfit the data (Figure 1.11). Clearly, the early stopping technique alone 

was not sufficient to prevent overfitting and violation of model phenomenological 

consistency. 
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1.2.3.2 New method for assessing phenomenological consistency of ANN models 
If ANN models are phenomenologically consistent near some points in the database, they 

are not necessarily consistent over the whole database space. We therefore checked the 

fulfillment of Eqs. (1.36)-(1.40) in the vicinity of every point available for training and 

computed the percentage of data points for which not all gradient conditions are met. We 

then defined the phenomenological consistency error (PCE) as a statistical indicator for 

measuring the overall disagreement yielded by an ANN model. 

Before explaining how PCE is quantified, recall that the ANN models are trained with some 

of the dimensionless groups Ni (i = 1…28) taken from the working database and not 

directly with the physical properties of the primary database. Obviously, each 

dimensionless number spans a range that is bounded by some extreme values, i.e., Ni,min ≤ 

Ni ≤ Ni,max. The models are thus valid only when the dimensionless numbers evolve within 

these ranges. 

Suppose now a trained ANN model uses as inputs the dimensionless numbers N1 to Nm to 

predict the pressure drop. Consider then a training data point, pk, in the space of the primary 

database that has the form pk = {uG, uL, ρG, µL, aT, ε , φ, Z, DC, ρL, σL, µG} and for which the 

experimental value of the pressure drop y(exp)(pk) is known. Consider a testing dimensional 

variable, vj, from a list of five {uG, uL, ρG, µL, aT} variables, which is nothing but the subset 

of dimensional variables used to coerce the ANN outputs via Eqs. (1.36)-(1.40). A 

maximum increment ∆ is determined such that when added to, or subtracted from, the 

initial value of the variable vj, will remain between N1 to Nm, which are recalculated with 

the new values of the variable vj. (Alternatively, the increment ∆ can also take a small value 

equivalent to a constant percentage of the initial value of the variable vj). Let us denote by 

pk,j
+∆ and pk,j

-∆ the points that result from respectively adding and subtracting an increment 

∆ from variable vj in vector pk. (For example, if j = 4, pk,4
+∆ = {uG, uL, ρG, µL+∆, aT, ε, φ, Z, 

DC, ρL, σL, µG}). Accordingly, the outputs from the ANN model can be computed forwards, 

central, and backwards as y(calc)(pk,j
+∆), y(calc)(pk), y(calc)(pk,j

-∆). 

Provided the following order holds  
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the gradient (calculated forward and backward) of the ANN output is positive with respect 

to the variable j when evaluated in the vicinity of point pk. If Eq. (1.41a) is satisfied by all 

five testing variables {uG, uL, ρG, µL, aT}, the ANN model is phenomenologically consistent 

near pk. The above procedure is repeated for all the data points available for training (k = 

1…NT), and PCE is computed as the percentage of the data points around which the ANN 

model fails the phenomenological consistency test. The pseudo-algorithm for PCE 

evaluation is detailed in Appendix 1. A mathematical formula for PCE is 
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 in which I is the identity function (taking the value 1 if the condition passed as argument is 

true) and  stands for logical intersection. Ideally, a model that fulfills the gradient 

conditions Eqs. (1.36)-(1.40) near all the data points in the database would give PCE = 0%. 

Such a value is unlikely to occur, due to the inherent overfitting problem and/or the local 

poor quality of experimental data. 

Ι

1.2.3.3 Finding ANNs with low PCE value to model pressure drop 
In this section we shall present how we can obtain ANN models with low PCE values and 

remarkable accuracy. There are two methods that yield ANN models that do more than 

fitting the data points.  

The first consists in modifying the ANN training procedure in such a way that the model 

learns to fit the data and simultaneously satisfy the phenomenological constraints. For 

example, the supplementary information about the function to be learned, also referred to as 

hints, can be added through new data points that contain that information (Abu-Mostafa, 

1993; Sill and Abu-Mostafa, 1997). A second method adopted in this work proposes not to 

alter the training procedure or the data. Instead, the network’s architecture, capable of 

retaining the supplementary information about the function to be learned, is searched. The 

supplementary information an ANN has to learn for predicting pressure drop ensures small 
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PCE values. By means of GA, the best input selector S (combination of dimensionless 

numbers as ANN inputs among the 28 candidates Ni) and the appropriate number of nodes 

in the hidden layer are determined (see section 1.1.2-1.1.4). 

The best input selector S and the corresponding ANN model minimizes the prediction error 

and PCE. The following composite criterion, Q, is formulated: 

)(min)( SS JJJJ
QQ

MaxMin ≤≤
=         (1.42) 

With  

)]([)(  )(QJ SSS JJ ANNPCEANNAARE  ⋅ + ][= Τ α      (1.43) 

In Eq.  (1.43) AARE[ANNJ(S)] is the average absolute relative error the ANN (having J 

hidden nodes) achieves on the training data set for a given input combination S. Inclusion 

in the composite criterion of a penalty for phenomenological consistency, PCE[ANNJ(S)], 

ideally guarantees that the model is not likely to display unexpected behavior. The 

multiplier α in Eq.  (1.43) was set to 0.25 by trial and error targeting to obtain models 

whose AARE[ANNJ(S)] and PCE[ANNJ(S)] were similar. This may be justified by the fact 

that we give about the same importance to the training data points as we gave to prior 

knowledge matching. However, as the PCE values for different combinations S were in 

general higher than AARE values, a sub-unitary multiplier had to be assigned. To reduce 

the computation time, the criterion Q did not include AARE[ANNJ(S)]G on the 

generalization data set, as implemented in § 1.2-1.4, nor the phenomenological consistency 

error PCE[ANNJ(S)]G . 

Let the GA-ANN methodology search for the three best ANN models having six entries, as 

in the M1-M3 models presented in Table 1.5. These models, labeled CP1, CP2, CP3 (Table 

1.6), show phenomenological consistency around the majority of data points in the training 

set, i.e., low PCE (<25%) and low AARE (~21%). These three models were tested around 

data points I and II (Figure 1.12). 
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Figure 1.12 Phenomenological behavior of CP1 to CP3 ANN models around point a) I and 
b) II 

 

All three ANN models exhibited a monotonically increasing trend around points I and II 

(Figure 1.12). There was also a closer consensus in prediction by the three models, 

compared to the M1, M2, M3 and SP models (Figure 1.10 and Figure 1.11). 

We have just exemplified the behavior of the models with respect to one test variable (µL) 

and around two custom points I and II. How well all these models behave with respect to all 

the testing variables (uG, uL, ρG, µL, aT) simultaneously and around all 5005 points of the 

database is given by the PCE values in Table 1.7. The best model yielded CPE = 53% (M1 

or M3) when the constraint was applied at the peculiar point I (models M1-M3 and SP). 

This means that among the 5005 data in the primary database, more than 2652 violated at 

least one of the gradient conditions Eqs. (1.36)-(1.40). Constraining systematically all the 

points in the database drastically reduced the PCE values; the best was CP2 model with 

PCE = 14%. Note that to allow worthy comparisons between models, all of them had 14 to 

15 hidden nodes, the same number of entries (six), and identical training epochs. CP1-CP3 

models outperformed M1-M3 and SP models because the data representation of the former 

models was less sensitive to noise than the latter. 
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1.2.3.4 An improved correlation for pressure drop prediction  
The SP model (Piché et al., 2001d) discussed above is a seven-entry model.  We decided to 

search a better seven-entry ANN model using the new GA-ANN methodology and to 

compare its performance to that of the SP model. The best model (named CP4) found in the 

last generation explored by the GA was: 

 ( χ=
ρ

∆ ,S,K,Eo,Eo,Fr,Blf
g
Z/P

B1
'
LLLL

L
)      (1.44) 

Table 1.8 Compared performances of ANN models SP and CP 

Statistics Piché et al. (2001d) 
(SP) 

This work (CP4)  

AAREG [%] 21.1 19.9 
AARET [%] 19.6 19.2 
AARET+G [%] 20.0 19.4 
σ G [%] 20.7 18.8 
σ T [%] 19.3 19.4 
σ T+G [%] 19.8 19.2 
PCEG [%] 81.1 17.3 
PCET [%] 80.5 16.7 
PCET+G [%] 80.7 16.9 
No. Weights 109 127 
 

The comparative performances of CP4 and SP models are detailed in Table 1.8. CP4 model 

restored the expected gradient conditions on the simulated output with a success of 83% for 

the testing variables uG, uL, ρG, µL or aT. Its PCE was four times lower than the SP model’s. 

The equations for the CP4 model are given in Table 1.9. A parity chart showing CP4 model 

predictions versus measured pressure drops is depicted in Figure 1.13. A uniform 

distribution of data around the parity line is present. 
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Figure 1.13 Parity chart of CP4 ANN model. The dotted lines represent the ±2σ envelopes 

 

1.2.3.5 Discussion  
In Section 1.2.3 we showed that the simple tests of monotonicity of the ANN output with 

respect to some dimensional variables, performed at the extremities of their definition 

ranges, cannot guarantee representative monotonic behavior in the entire feature space.  The 

PCE (phenomenological consistency error) is a better measure, as it evaluates the 

monotonicity in all the data points available for training. However, a 0% PCE was not 

attained; therefore, the next section discusses lowering the PCE and prediction error by 

combining several different ANN models. 
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1 -15.625    

    
    
    
    
    
    
    

             

-20.166 5.199 1.223 -0.390 -0.324 -24.203 -2.801 8.174 6.196 -13.786 0.020 1.323 -11.417  
2 7.758 8.868 -0.208 -5.096 4.687 0.880 15.430 9.247 -5.896 -9.190 8.455 -6.875 6.026 10.259  
3 5.833 23.015 -11.210 -1.560 21.665 -27.436 4.137 0.035 44.384 11.244 -15.656 19.684 -6.908 20.613  
4 1.001 -2.220 6.854 -0.289 -15.279 28.561 -86.487 0.266 -51.511 4.074 -24.571 -17.069 4.074 -1.256  
5 -27.213 16.980 12.332 -1.787 -30.549 15.451 -26.909 -1.132 -27.135 21.730 -7.706 5.382 -8.830 21.087  
6 0.526 5.805 -0.622 -0.491 -100.040 -25.615 -11.960 -3.824 40.254 22.886 -29.674 -11.934 6.704 27.156  
7 1.307 -1.929 5.582 -6.182 1.367 0.155 1.546 -0.087 0.899 -5.678 0.495 10.682 6.984 4.519  
8 21.160 1.602

 
-5.781 9.120 39.939 -3.092 45.910 -3.144 6.234 -23.785 26.847 12.533 -16.151 -40.058

 
 

ωj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 -0.846   4.307 11.544 -14.378 0.906 -5.570 -5.292 6.172 -3.426 -2.806 5.611 -0.246 2.652 -1.779 2.447

*A “user-friendly” spreadsheet of the neural correlation is accessible at: http://www.gch.ulaval.ca/∼grandjean or http://www.gch.ulaval.ca/∼flarachi 
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Table 1.9 ANN normalized input and output functions and the corresponding weights (Ranges of applicability in brackets)* 

 

http://www.gch.ulaval.ca/grandjea
http://www.gch.ulaval.ca/flarachi
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1.3 ANN meta-models to enhance prediction and 
phenomenological consistency 

1.3.1 Introduction to ANN combination schemes 
In this section we study the possibility of combining several good ANNs in order to achieve 

better predictions. Although all the models are individually equally good on average, they 

are not on each individual point from the database. Some ANNs may be locally good, while 

others, because of different inputs’ sets and architectures, may not be. Hence, combining 

ANNs could create a synergistic effect, especially in the database regions where the 

contrast in performance between individual ANNs is great.  

This approach has been investigated in several research works (Alpaydin, 1993; Hashem et 

al., 1997; Benediktsson et al., 1993; Alpaydin, 1998; Ueda, 2000), and consists in feeding 

the predictions of several distinct networks, referred to here as base-models (level 0), into 

an upper level-model (level 1), referred to as meta-model, which is generally linear. Meta-

model are more robust than the individual base-models because base models might be 

specialized on different regions in the input space. Hopefully, they will not all be wrong at 

the same point in the database space. The base models might be different by the data 

representation; i.e., the learner might use different representations of the same inputs, by the 

training scheme, the initial weight set, etc. Comprehensive classification of the possible 

differences between the base-models, the functions, and the combinatorial strategies of their 

output into a meta-model were discussed by Alpaydin (1998). An illustration of ANNs 

combination in a pulp and paper industry application is presented in Lanouette et al. (1999). 

In their work, the base ANN models differed mainly in the data samples with which they 

were trained. 

Hashem (1997) investigated combining a number of trained networks by performing 

weighted sums of the outputs of the base (component) networks. An unconstrained MSE-

OLC (mean squared error-optimal linear combination) of networks with constant term, 

which theoretically yields the smallest MSE, was proposed. Independently, Perrone (1993) 

developed the general ensemble method (GEM) for constructing improved regression 

estimates. The GEM is equivalent to the constrained MSE-OLC (Hashem, 1997). In these 
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works, the weights in the meta-model were determined by minimizing the MSE of the 

meta-model on the same data on which the base-models were trained. This is simple to do, 

but if base-models are highly cross-correlated, i.e., base-models are all weak in the same 

regions of the input space, the meta-model will lack robustness (Breiman, 1992). Breiman 

(1992) extended the Wolpert (1992) approach to stacking regressions by estimating the 

meta-model regression coefficients (level 1 model) based on the performance of the base-

models (level 0 model) on generalization data. The major drawback of Breiman’s method is 

its computational heaviness, since the base-models need to be retrained on the cross-

validation data (1992). In addition, the common feature to these studies on networks 

combination was their focus on improving the prediction accuracy without concerning with 

monotonicity constraints that the meta-model may need to match. 

1.3.2 Base-models and meta-model 
Consider again the pressure drop prediction problem in counter-current packed bed reactors 

in which the characteristic to approximate, y, is the dimensionless pressure drop, ∆P/ρLgZ. 

Let us also assume that y is contributed by a deterministic function g, such that 

ε  )g(  )y( += pp , where ε is a normally distributed, zero-mean, random variable. Estimators 

of the function g could be neural networks, e.g., multilayer perceptron, radial basis 

functions, trained with pairs (pk,y(pk)). The inputs of such neural networks could be 

dimensionless Buckingham Π groups “edited” from some of the dimensional variables 

contained in vectors pk = {uG, uL, ρG, µL, aT, ε , φ, Z, DC, ρL, σL, µG}. The reservoir of 

dimensionless numbers considered is given in Table 1.3. Using dimensionless numbers 

enlarges the applicability ranges for the model but also creates ambiguity and uncertainty as 

to their selection. Depending on the pertinence of these inputs, the resulting networks may 

or may not be accurate and phenomenologically consistent, i.e., will not exhibit low AARE 

and PCE values. The GA-ANN methodology described in section 1.2.2 and reinforced in 

1.2.3 enabled identification of several networks exhibiting low AARE and PCE. Instead of 

retaining the best among them and discarding the others, as we did in 1.2.3, we retained the 

three best networks (referred to as bmr, r = 1,3) and built a meta-model.  
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These base-models differed by the quantity and type of dimensionless numbers they used as 

their inputs, as well as by the number of hidden nodes (Table 1.10). All the other related 

training parameters were the same: bm1-bm3 were trained on 70% of the available data (NT 

= 3503), and the remaining 30% (NG = 1502) were used to evaluate their generalization 

capabilities, as is standard in ANN modeling (Flexer, 1994). The following statistics were 

computed: 

i) the average absolute relative error (AARE) 
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with y(pk) the experimental value of y, and ycalc(pk) the predicted value of y for the data 

point pk. 

ii)  the standard deviation of the absolute relative error (STDEV) 
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iii) the maximum absolute relative error (MAXARE) 
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iv) the mean square error 
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v) the phenomenological consistence error (PCE), computed as the percentage of data 

points pk in whose vicinity at least one of Eqs. (1.36)-(1.40) monotonicity constraints was 

violated.  
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Table 1.10 The base models used to build the meta-model 

Model     Inputs(**) No.
Inputs 

No. Hidden
Nodes 

AARE 
[%] 

STDEV 
[%] 

MAXARE 
[%] 

MSE* PCE
[%] 

bm1 N       10, N13, N14, N18, 
N23, N26, N27 

7 15 19.49 18.02 164 1.22e-2 21.6

bm2       N9, N10, N13, N14, 
N21, N24, N27 

7 14 19.95 18.77 195 1.29e-2 17.3

bm3       N10, N14, N17, N18, 
N24, N27 

6 14 21.84 20.35 194 1.56e-3 20.2

(*) MSE was computed on the log values of calculated and experimental y; (**) The significance of the input N-i is the same as in Table 1.3  
 

 

Table 1.11 The values of the weighting coefficients in the meta-model 

Model β1 β2 β3 
AARE+STDEV – optimal meta-model 0.367 0.380 0.279 

MSE – optimal meta-model 0.392 0.404 0.204 

 

Table 1.12 The performances of the meta-model compared with the best and simple average models 

Model AARE [%] STDEV [%] MAXARE [%] MSE* PCE [%] 
AARE+STDEV – optimal meta-model 17.28 15.00 133 1.17e-2 7.9 

MSE – optimal meta-model 17.97 16.51 148 1.08e-2 9.1 
Simple average 18.05 16.69 156 1.09e-2 8.0 
Best base-model 19.49 18.02 164 1.22e-2 21.6 

(*) MSE was computed on the log values of calculated and experimental y.
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The most popular measure for assessing the accuracy of a model is the MSE on the 

generalization data; it does not, however, always adequately describe the quality of the 

model’s fitting. More informative and relevant measures include AARE, STDEV, and 

MAXARE. Among the series bm1 - bm3 (Table 1.10), bm1 was the best model, with the 

lowest AARE on generalization data, while its PCE approximated that of the other two 

models. The meta-model (Figure 1.14) using the n = 3 base-models bmr, was a weighted 

summation of their outputs: 

∑
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rr bmmeta
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)()( pp β         (1.49) 

As y spans several decades, log values of the base-model outputs were taken as the linear 

regressors of the log value of y. However, when the statistics i-v were reported, actual y 

values, except for MSE, were employed. 

The simplest way to estimate β is by minimization of MSE for the meta-model on the 

training data (Hashem, 1997). This does no, however, necessarily, lead to the lowest AARE 

and STDEV for the meta-model. To circumvent such a limitation, we defined in this work a 

different optimality criterion to determine the meta-model regression coefficients β. This 

AARE+STDEV criterion is simply the sum of AARE and STDEV the meta-model achieves 

on the NT training data: 
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Proper value for β is obtained by minimizing criterion C using Newton’s method, with the 

derivatives computed numerically. 
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Figure 1.14 Meta-model construction: original variables converted in different dimensionless numbers become the inputs of the base 
models, whose outputs are fed in the meta-model, which predicts a dimensionless form of the pressure drop 
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1.3.3 Results and discussion 
The β regression (or weighting) coefficients were determined according to Hashem (1997) 

(MSE) and Eq. (1.50) (AARE+STDEV) optimality criteria. The obtained weighting 

coefficients (Table 1.11) can be interpreted as the certainty of a network in its output 

(Alpaydin, 1993). All coefficients are significant and close to each other. However, this is 

not enough to guarantee robustness of the resulting meta-model; a potential problem that 

affects estimation of the β coefficients is colinearity among base-model outputs (Hashem, 

1997; Breiman 1992). Colinearity has a chance to occur because all bmr models are trained 

to approximate the same function. 

Let us denote by X the matrix whose columns are the log values of the outputs of the bmr 

models (which are linear regressors in the meta-model) for each point pk in the training set. 

Eigenvectors (also called principal components) of the scaled and non-centered X'X matrix, 

as well as condition indices and variance-decomposition proportions, are computed for 

individual variables (regressors in the meta-model) using the SPSS software. According to 

Belsley (1991), a colinearity problem occurs when an eigenvector associated with a high 

condition index contributes strongly to the variance of two or more variables. This was not 

the case in our three base models bmr. 

To determine if the models completed each other and the resulting meta-model was robust, 

we compared its performance with the best base-model and the simple average model. The 

statistics i-v presented above were used in the comparisons; the results are summarized in 

Table 1.12. Both MSE and AARE+STDEV optimal meta-models outperformed the best 

and the simple average models. Even the simple average model was a improvement over 

the best base-model. Moreover, AARE, STDEV, MAXARE, and PCE were respectively 

reduced by 13%, 20%, 23%, and 173% if the AARE+STDEV optimal meta-model was 

used instead of the best base-model. 

To illustrate how a meta-model achieves lower AARE and PCE than base-models, an 

experimental point p was chosen. The base-models and meta-model were use to simulate an 

output for a range of liquid velocity values, uL, in the vicinity of p (Figure 1.15).  
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Figure 1.15 The meta-model showing monotony with respect to uL and accuracy in 
prediction for data point p. The base-models show either imprecision or phenomenological 
inconsistence 

 

This example shows that although the base-model bm2 predicted the pressure drop value at 

point p very well, it failed one of Eqs. (1.36)-(1.40) monotonicity constraints. This would 

eventually lead to the incorrect prediction of a point with lower uL. On the other hand, 

although the other two models, bm1 and bm3, exhibited monotonically increasing trends, 

their predictions were not as accurate, overestimating (bm1) or underestimating (bm3) the 

pressure drop at point p. Conversely, the meta-model was not only very accurate near p, but 

also adhered to the monotonicity constraint with respect to the liquid velocity.  

Now, in the end of the dimensionless correlations chapter, we would like to give the 

reader some details pertinent to the neural networks experimentation performed herein. The 

estimate of the neural network accuracy may vary as a function of the partition of data in 

training and generalization sets, as well as on the weight initialization (Flexer, 1994; 

Prechelt, 1998). In sections 1.2.2 and 1.2.3, the error rates of models and a measure of 

disagreement with the prior knowledge in terms of monotonicity were combined to guide 
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the search for good input combinations. While performing this search with the genetic 

algorithm, the partition of data and the weights initialization remained fixed in both cases 

(1.2.2 and 1.2.3). However, due to the inherent parallelism of the GA search, features which 

were relevant could not be eliminated by chance alone just because of a poor weight 

initialization. This is because the features were present in the population in a multitude of 

combinations which could not fail simultaneously. Of course, once a combination of inputs 

was selected (section 1.2.3), different partitionings of data and weight initializations were 

performed before proposing a final model. 
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1.4 Conclusions 
 

In this first chapter, we treated the issue of regression with neural networks whose inputs 

are dimensionless groups computed from the dimensional variables: i.e., a collection of 14 

physical properties and operating conditions, characterizing the three (G, L, S) phases. We 

devised a genetic algorithm-based procedure for building ANN models by identifying the 

most expressive dimensionless groups and their numbers, as well as appropriate network 

architecture. We directed the search toward models matching the monotonicity restrictions 

gathered from prior knowledge concerning the particular modeled characteristics. In a first 

step, the monotonicity was tested at the edges of definition ranges for the dimensional 

variables. Even though the automated GA-ANN procedure easily identified several passing 

models, there was no guarantee that such behavior was representative of the whole domain. 

A new measure of the monotonicity behavioral likelihood, termed Phenomenological 

Consistency Error (PCE), was devised as a more significant measure. Several models were 

identified matching the monotonicity rules in the vicinity of 80% of the points used for test 

purposes. These models differed mostly by their inputs and network architecture. The third 

part of this chapter treated the possibility of further reducing the prediction error and, more 

importantly, the PCE, by exploiting the diversity of the models. Positive results were 

obtained, as PCE and AARE on generalization sets were further diminished . However, 0% 

could not be achieved, as the monotonicity was not imposed in the neural model, but 

assessed via PCE after training. Imposing monotonicity via hard restrictions in the 

functional form of the neural network model will be treated in the next chapter. This is 

possible only if the dimensional variables are the inputs of the network and not 

dimesionless numbers computed from from them. 
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1.5 Notation 
 

ANNj(S)  ANN having j hidden nodes and using the m-input selector S  

a  Interfacial area (m2) 

aS  External area of particle and wall per unit volume aS = aT + 4/DC (m2/m3) 

aT  Bed-specific surface area (m2/m3) 

B  Bed number φ
ε
⋅⋅

−⋅
=

CT D
B )1(6

a  

BlG  Gas Blake number 
GT

GG
G a

u
Bl

µε
ρ

⋅−⋅
⋅

=
)1(

 

BlL Liquid Blake number 
LT

LL
L a

uBl
µε

ρ
⋅−⋅

⋅
=

)1(
 

bmr  Individual neural network model 

C  Scaling coefficient in linear conversion of criterion into fitness function 

CaL  Liquid Capillary number 
L

LL
L

uCa
σ

µ⋅
=  

C( )  AARE+STDEV criterion depending on β  coefficients β

cc  Convergence criterion in ANN learning step 

DC  Column diameter (m) 

dh  Krischer-Kast hydraulic diameter ( )( ) 3
123 )19(16 επε −⋅⋅= PVh dd  (m) 
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dP  Sphere diameter equivalent to the particle specific area ( ) TP a16 ε−=d  (m) 

dPV Sphere diameter equivalent to the particle volume ( ) ( )TPV a16d ⋅φε−=  

(m) 

EoL  Liquid Eotvos number 
L

PL
L

dgEo
σ

ρ 2⋅⋅
=  

Eo’L  Modified liquid Eotvos number 2
'

TL

L
L

a
gEo

⋅
⋅

=
σ
ρ

 

fLGG  Friction factor 

FrL  Liquid Froude number 
P

L
L dg

uFr
⋅

=
2

 

FrG  Gas Froude number 
P

G
G dg

u
Fr

⋅
=

2

 

g  Generation in a GA run; gravitational constant (m/s2) 

GaG  Gas Galileo number 2

32

G

PG
G

dg
µ

ρ ⋅⋅
=Ga  

GaL  Liquid Galileo number 2

32

L

PL
L

dg
µ

ρ ⋅⋅
=Ga  

Ga’G  Modified Gas Galileo number 32
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TG

G
G a

g
Ga

⋅
⋅

=
µ
ρ

 

Ga’L  Modified Liquid Galileo number 32

2

TL

L
L a

g
⋅
⋅

=
µ
ρGa  

H  Number of hidden nodes 

Hj  Activation function of the j neuron in hidden layer 
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HA  Henry’s law constant(-)  

Ii  Input variable representing a column in the database 

J  Number of nodes in hidden layer 

Jmax  Maximum number of nodes in hidden layer 

K1  Wall factor ( )

1

1 13
21

−
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D
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ε  

K2  Wall factor 







=

C

PV

D
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K 22  

K3  Wall factor 
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CC

PV

D
Z

D
d

K3  

KL  Overall mass transfer coefficient (m/s)  

kL  Liquid-side mass transfer coefficient(m/s) 

kg  Gas-side mass transfer coefficient(m/s) 

m  Number of ANN inputs selected by S 

M  Number of input columns in the database 

MAXARE Maximum absolute relative error 

MAXPOP Size of population 

meta(pk)  Output of the meta-model for the input point pk 

MoL  Liquid Morton number 3

4

LL

L
L

gMo
σρ

µ
⋅
⋅

=  

MSE-OLC Mean square error optimal linear combination 
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N  Number of samples in a data set 

Ni  Dimensionless group computed from the dimensional variables 

NP  Number of packings per unit bed volume (m-3) 

Nw  Number of connectivity weights 

O  Output variable of interest for a particular problem 

OhL  Liquid Ohnesorge number 
pLL

L
L d⋅⋅

=
σρ
µ 2

Oh  

P  Pressure (Pa) 

pk, Vector of the dimensional variables recorded at the position k in the data 

base, pk = {uG,uL,ρG,µL,aT,ε ,φ,Z,DC,ρL,σL,µG} 

PPC  Number of phenomenological rules violated by an ANN model  

Q(S)  Value of criterion for S 

ReG  Gas Reynolds number 
G

PGG
G

du
µ
ρ ⋅⋅

=Re  

ReL  Liquid Reynolds number 
L

PLL
L

du
µ
ρ ⋅⋅

=Re  

S  Combination of dimensionless numbers or input selector 

S  Normalized output variable 

SB  Bed correction factor ( ) ( )ε−⋅= 1da hSBS  

SB2  Bed correction factor ( )( )
ε

επε
−

⋅−⋅⋅=
1

/
)19(16

2
3

123
2,

ST
B

aa
S  
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SB3  Bed correction factor ( )( )
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St’G  Modified Gas Stokes number
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STDEV Standard deviation of ARE 
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( )1NAARE
Py
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exp
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calc
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u  Phase velocity (m/s) 

Ui  Normalized input variable 

vj  Testing dimensional variable 

WeL  Liquid Weber number 
L

PLL
L

du
σε

ρ
⋅

⋅⋅
= 2

2

We  

wi,j, wj  ANN connectivity weights 

X The matrix whose columns are the log values of the outputs of the bmr 

models for each point pk in the training set 

y(calc)(pk) Dimensional pressure drop calculated from the output S for the input vector 

pk 
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y(exp)(pk), y(pk) Dimensional pressure drop measured for the input vector pk 

Z  Bed height (m) 

 

Greek letters 

χ   Lockhart-Martinelli parameter 
L

G

L

G

U
U

ρ
ρ

χ =  

ρ   Phase density (kg/m3) 

µ   Phase viscosity (kg/m.s). 

β   Weighting coefficients vector in the meta-model 

α, β  Weighting coefficients in the criterion 

ε   Bed porosity; normally distributed, zero-mean, random variable 

φ   Particle sphericity factor ( ) ( )( ) 3
2

PTP N16aN ⋅πε−⋅π=φ  

∆P  Irrigated pressure drop (Pa) 

σ  STDEV; phase surface tension (N/m) 

 

Abbreviations 

AARE  Average absolute relative error; 
( ) ( )

( )∑
=

−
=

N

1k k
exp

k
calc

k
exp

Py

PyPy
N
1AARE  

ANN  Artificial Neural Network 

ARE  Absolute relative error 
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PC  Phenomenological consistency 

PCE  Phenomenological consistency error 

 

Subscripts and Superscripts 

calc  Calculated  

exp  Experimental 

G  Gas, generalization 

G+T  Generalization and training  

GA  Genetic algorithm 

L  Liquid 

max  Maximum 

min  Minimum 

pred  Predicted 
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2. Neural Network Dimensional Correlations for Continuous 
Multiphase Reactors Characteristics 
 

 

2.1 Bibliographical review and problematic  
 

In this chapter we deal with the case when the inputs in a neural network model are the dimensional 

variables describing the three phases. These inputs should provide information about the output 

characteristic we wish to model. In this situation, the feature selection problem is less pronounced than 

in dimensionless modeling. This is because in multiphase systems, the raw variables are less numerous 

than the possible dimensionless groups from which they can be edited. Of course, some of these 

variables might be more useful than others in predicting the characteristic of interest; however, we 

shall consider that the set of features is already selected. The problem from the previous chapter then 

remains:, i.e., how do we select models that not only accurately predict the data, but which also match 

prior knowledge in terms of monotonicity behavior? There are not as many examples in multiphase 

reactor literature of dimensional ANN correlations as there are in the dimensionless category. Larachi 

et al. (1999) proposed ANN modeling of the liquid superficial velocity at transition between the trickle 

and pulse flow regimes as a function of the raw variables: liquid viscosity (µL), superficial gas velocity 

(vSG), gas density (ρG), volume-equivalent particle diameter (dp), and two bed parameters as: 

),,,,,,(, ερσµρ pGSGLLLtrSL dvfv =          (2.1) 

However, the larger field of chemical engineering, as well as other fields of science, has attempted to 

use monotonicity information. Recent works have emphasized the importance of a priori information 

and domain-specific knowledge in neural network development. Abu-Mostafa (1993), referring to the 

supplementary information about the function to be learned as hints, developed a systematic method 

for incorporating this a priori knowledge in the usual learning-from-examples process. Typical hints 

that were considered included invariance, monotonicity, and approximation, which were presented to 

the learning process by examples. Monotonicity, however, has been studied in more recent works 

considering the subject of embedding a priori knowledge in the neural network development. Wang 
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(1996) proposed an algorithm to build monotonic concave back-propagation networks by choosing as 

training samples only those data points from the training set satisfying a mono-concave relationship 

explicitly. In a finance application, Sill (1998) proposed a modified feed-forward neural network 

trained with a gradient-based technique guaranteeing monotonicity by its functional form. In chemical 

engineering applications, monotonic neural networks have been introduced by Kay and Ungar (1993, 

2000). They developed monotonic multilayer feed-forward neural networks by forcing the signs of the 

networks’ weights. They also showed that monotonicity information contributes to squeeze down 

model confidence band, yielding more reliable models. Network training was performed using a 

sequential quadratic algorithm; no second-order information was used. Second order monotonicity 

information refers to the sign of the second order derivative of the modeled characteristic with respect 

to an input variable, coinciding with concavity.  

In the next sections we present a new method for building neural networks that are able to achieve 

100% monotonicity at the first and possibly the second order. The neural network training is 

performed by means of an evolutionary algorithm which combines genetic and hill climbing searches 

(GA-GHC). To date, there are no reports of using genetic algorithm based search techniques for 

training monotonic-concave neural networks. Furthermore, in contrast with past attempts to develop 

dimensionless multiphase flow correlations, we used raw dimensional operating variables, rather than 

the dimensionless groups, as network inputs. When mapping the dependent variable y (reactor 

transport parameter) to the G-L-S operating (independent) variables , it is not 

necessarily better to reduce the dimensionality of the input vector by creating fewer dimensionless 

groups N

),...,,( 21 avvv=v

),...,,( 21 bNNN=i=f(v) to be used as model inputs. The dimensionless groups , b<a may 

be cross-correlated (as they may contain some common dimensional variables v

N

i) which is not helpful 

for learning. Also, the number of network weights required for capturing the relationship y(N) is not 

necessarily less than the number needed for learning the relationship y(v). Finally, it is far more 

awkward to develop mathematically guaranteed monotonic networks with respect to the dimensional 

variables when the network’s inputs are dimensionless groups Ni. The proof-of-concept of embedding 

monotonicity and concavity information in the training of NNs by means of genetic algorithms will be 

illustrated in correlating total liquid holdup in randomly packed bed containing counter-current gas-

liquid towers. 
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2.2 Monotonic networks 
 

The most common architecture used in function approximation is the multilayer feed-forward neural 

network, depicted in Figure 2.1. It consists of I nodes in the input layer, J hidden nodes, and a single-

output node. Hidden and output layers are endowed with a nonlinear activation function, the logistic 

sigmoid:  

ze
z −+

=σ
1

1)(             (2.2) 

The estimate produced by the network is computed as: 











+
















+⋅⋅= +

= =
+∑ ∑ 1

1 1
,1, )( J

J

j

I

i
jIjiij wwwxwy σσ)  (2.3) 

 

y)

H1 x1 

 
wi,j wjxi Hj

 

xI 
 HJ

 1  1

 

Figure 2.1 Typical feed-forward multilayer neural network used for function approximation 

 

One classical approach for training feed-forward neural networks focuses on minimizing the sum of 

squared errors ∑ of the fitting function f(x,w) on a training data set, where y
=

−
TN

i
ii yy

1

2)( )
i represents the 
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true (experimental) value of y for the input pattern xi, =iŷ  f(xi,w), and NT is the number of training 

samples. Very often, there are too many degrees of freedom in estimating the networks weights, w, 

using such a simple sum of squared errors criterion, leading thus to networks exhibiting poor 

generalization ability. The training process optimizes the weights in such a way that the fitting function 

f(x,w) too closely approaches some training points, which incidentally may be corrupted or noisy. This 

problem, known as overfitting, may be reduced at the cost of introducing bias with some regularization 

or early stopping techniques. The degrees of freedom in the training process may be drastically 

reduced, and hence overfitting diminished, if the course of possible functions is narrowed to include 

only monotonic functions (Kay and Ungar, 1993, 2000). This becomes possible provided the signs of 

the first derivative of the function f(x,w), to be learned with respect to some particular inputs xk, are 

known with certainty. If this is the case, f(x,w) may be constrained to obey that expected behavior. For 

example, for non-strict increasing monotonicity: 

0≥
∂
∂

kx
f  (2.4) 

The 1st derivative may be calculated as: 









⋅

+
⋅

+
=

∂
∂ ∑

=
−

−

−

− J

j
jkb

b

ja

a

k

w
e

ew
e

e
x
f

1
,22 )1()1(

        (2.5) 

   

with  

( )( ) 1
1

+
=

+⋅= ∑ J

J

j
j wbwa σ           (2.6) 

( ) jI

I

i
jii wwxb ,1

1
, +

=

+⋅= ∑           (2.7) 

A sufficient condition for satisfying Eq. (2.4) is: 
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Jjjww jkj ≤≤∀≥⋅ 1,,0,          (2.8) 

Training the above monotonically increasing neural networks with respect to input xk is equivalent to 

solving the following optimization problem (Kay and Ungar, 1993, 2000): 

Jjjwwtosubjectyy jkj

N

i
iiw

T

≤≤∀≥⋅−∑
=

1,,0)(min ,
1

2)      (2.9) 

To enforce concavity as well as first-order monotonicity, supplementary constraint on the second-order 

derivative must be imposed: non-strict upward concavity or 02

2

≥
∂
∂

kx
f , and non-strict downward 

concavity, or 02

2

≤
∂
∂

kx
f , in as much as Eq. (2.4) is verified. Second derivative is computed by 

differentiating Eq. (2.5) r.h.s. Unlike monotonicity (Eq. (2.4)), it is difficult to infer network concavity 

information via the signs of weights (such as Eq. (2.8)). For practical reasons, function concavity may 

be judged only at particular learned sample points where monotonicity is fulfilled. However, the 

problem described by Eq. (2.8) with supplementary penalties forcing to desired concavity (upward or 

downward), cannot be solved with simple constrained nonlinear optimization techniques. 

 

2.3 Reformulation of neural network training problem with 
monotonicity and concavity constraints 
 

Let us denote by m the number of network inputs for which monotonicity information is available, and 

by c the number of inputs among the m ones for which concavity information is also given ).( mc ≤  

Monotonicity and concavity information for a particular problem can be given in a two-row and m-

column matrix referred to as MCI matrix: 

concavity
tymonotonici

MCI

mk
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......21
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A ‘1’ value in 1st row and kth column of MCI matrix means 0≥
∂
∂

kx
f ; similarly, ‘-1’ stands for 

0≤
∂
∂

kx
f . Equivalently, a “1” value in 2nd row and kth column means 02

2

≥
∂
∂

kx
f , whereas “-1” stands for 

02

2

≤
∂
∂

kx
f , and “0” for no concavity restrictions when is not supplied. No zeroes occur in the first row 

of the MCI matrix because all the network’s inputs, where monotony information is unavailable, are 

excluded from the list. 

To obtain a neural network that closely agrees with the defined MCI matrix, we need to reformulate 

the problem of the network training as the minimization of a composite criterion, which is equivalent 

to a global error (GErr): 

∑
=

⋅+⋅+−=
TN

i
concmonii PPyy

1

2)()(GErr βα)w         (2.10) 

where Pmon and Pconc are, respectively, penalty functions for monotonicity and concavity. 

A natural form for the monotonicity penalty function is: 

∑∑
= =

=
m
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j
mon monP

1 1
)(w            (2.11) 







 −=⋅
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otherwise

kMCIwwif
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)(

,

w      (2.12) 

where sgn is the sign function. In this way, we measure the degree in which a particular weight vector 

w satisfies Eq. (2.10) for all k inputs. The penalty function that accounts for concavity agreement 

between model and a priori knowledge is defined as: 
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The role of the penalty terms is explained as follows: Pmon is evaluated through Eq. (2.11). Pmon = 0 

implies that f(x, w) is monotonic with respect to all first-row inputs of the MCI matrix. It makes sense 

then to turn to 2

2

kx
f

∂
∂  to compute the penalty term for concavity Pconc to discriminate, among networks, 

which fulfill or violate concavity. If Pmon ≠ 0, Pconc is attributed maximum penalty value, and no 

second-order derivative is computed. 

Setting the appropriate values for multipliers in Eq. (2.10) is important if monotonic networks with 

low SSE are to be created. These monotonic networks should also satisfy the concavity constraint. 

Guidance on how to set them is based on the following heuristics: 

Consider the r.h.s of Eq. (2.8) divided by the number of training samples. It would read: 

conc
T

mon
T

P
N

P
N

MSE ⋅+⋅+
βα , with MSE representing the mean square prediction error. 

All of these terms together are to be minimized by a genetic algorithm, which was designed to be 

elitist in nature; i.e., it never drops the best solution found. 

For a given problem, there always exists a multitude of weight sets w for which , so the initial 

population of the optimization algorithm is formed by (randomly generated) weight sets whose signs 

are set in such a way that  is null. The MSE term will always be lower than 1, as both the estimate 

0=monP

monP
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iy)  and the true  belong to the interval [0,1]. The lowest degradation (i.e., increase with respect to 

zero) of the term  is 1. 

iy

Pmon

P

In order to ensure that the optimization scheme will never prefer a weight set with lower MSE and 

non-null , it is enough to set monP 1⋅
TN

α  greater than the maximum hypothetical decrease in the MSE 

term, i.e., 1 (from 1 to 0). In practice, we may choose 
TN

α  as equal with the MSE of the best weight 

set randomly generated in the first generation of the genetic algorithm (but having 0=monP ). The 

value of 
TN

β  should be set as a fraction of the value of 
TN

α  in order to generate solutions with 

considerably lower MSE, even if they exhibit non-null , rather than an ill-fitting solution with 

.  β value, such that 

concP

0=conc αβ <<0 , is problem-dependent, and should be established as the 

fraction of the total potential decrease in MSE sacrificed for the sake of having verified. If the 

training data exhibits concavity in the sought direction, the MSE will be decreased by the genetic 

algorithm (by tuning the values of weights and/or their signs) up to the point when 

0

0

=concP

=concP would be 

fulfilled. 

The function to be optimized (Eq. (2.10)) is multimodal due to the sum of the squared-errors term 

and/or the penalty terms that also induce discontinuity of the function GErr(w). There are several 

methods that can be employed to optimize a multivariable function for which gradient information 

may not be used. There are genetic algorithms, random search, stochastic hill climbing, particle swarm 

optimization, simulated annealing, or combinations thereof (Krink and Løvbjerg, 2002). Here, the 

network training being defined as a minimization problem of criterion GErr for vector w, let us 

describe next the algorithm used to perform optimization. 
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2.4 Genetic algorithm - genetic hill climber optimizer  
 

Gradient-based techniques are not suitable because of the discontinuity nature of the penalty functions 

added in the training criterion. Hence, since the function to be optimized is locally similar to a classical 

error surface of neural networks, it is more appropriate to use genetic algorithms (Schaffer et al., 1992; 

Branke, 1995; Whitley, 1991, 1995). 

Genetic algorithms (GAs), first pioneered by Holland (1975), are now among the most general 

optimization methods used in science and engineering. As described by Goldberg (1989), classical 

genetic algorithms applied to multivariable function optimization require first encoding the variables w 

in a binary string that becomes an individual in a population that is evolved through several 

generations. A first population is randomly initialized, and then the function value is calculated for 

each individual among this population. The next generations are formed by means of three genetic 

operators: reproduction (selection), recombination (crossover), and mutation. The reproduction 

operator ensures that highly-fitted individuals will be propagated in the next generation and/or produce 

offspring by crossover and mutation. The recombination operator yields two new individuals from two 

parents by simply interchanging bit substrings. (The start point and length of interchanged substrings 

are randomly chosen). Mutation maintains diversity within the population by altering, with a low 

probability, the value of individual bits. All the implementation aspects in a computer algorithm of the 

evolutionary principles affect performance, especially when the optimization problem is a neural 

network training problem where the permutations problem (numerous equivalent symmetric solutions) 

makes the search difficult (Whitley, 1995).  

Classical genetic algorithms have not proven effective in neural networks training, and several 

modifications have been suggested in the literature. To be distinguished from classical hyper-plane 

sampling genetic algorithms, such search algorithms have been named genetic hill-climbers (Whitley, 

1995). The first modification concerned using real-valued encoding (Branke 1995; Whitley 1991; 

Whitley 1995) instead of binary encoding (Figure 2.2). This implies that recombination may occur 

only between weights. Second, the role of mutation has been switched from a mere background 
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operator to a principal role during search. Finally, the population size has been lowered (e.g., 50 

individuals). 

 

wj wi,j  

Figure 2.2 Real-valued string representation of a feed-forward neural network with single output node 

 

The evolutionary algorithm designed here combines a kind of classic genetic search with genetic hill-

climbing. The idea behind this approach is to take advantage of two fundamentally different 

improvement processes: gene interchange between individuals (specific to classical GAs) and hill-

climbing in attractive regions specific to stochastic hill-climbers. 

 

 

Figure 2.3 Pseudo-code for the genetic algorithm-genetic hill climber optimizer 

 

The basic steps of the proposed algorithm are depicted in Figure 2.3. A population of MAXPOP 

individuals is first randomly initialized within a given range specific to the optimization problem. 

Then, the reproduction operator (to be described in detail later) promotes some of the best individuals 
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in the next generation g+1. Within two of three generations, a classical GA search is performed using 

classical crossover (substring interchanges of weights between two parents to yield offspring) and low 

probability mutation. In one of three generations, genetic hill-climbing is performed using a high 

mutation rate and an arithmetic crossover that generate two offspring by linear combination of some 

parts of the parent strings. 

2.4.1 Reproduction (Selection) 
The purpose of this operator is to ensure that the fittest specimens perpetuate through offspring and/or 

have greater chances to be found in the next generation. Numerous schemes are known which 

introduce various levels of determinism into the selection process. The one we used was the stochastic 

remainder selection without replacement but with elitism (Goldberg, 1989). The principle here is that 

above average individuals are receiving at least one copy in the next generation, while even the 

inferior individuals retain a chance to be promoted. As the criterion GErr(w) was minimized, a linear 

transformation was applied to convert it into a fitness measure: 

ii GErrGerrCfitness −⋅= max
*           (2.15) 

A linear fitness scaling was performed as described elsewhere (Goldberg, 1989) to transform this raw 

fitness into functional fitness, fitnessi. 

Then a survival probability was computed for each individual i of the MAXPOP population: 

∑
=

= MAXPOP

i
i

i
i

fitness

fitnessp

1

           (2.16) 

Using this probability, the expected number of copies of each solution i was computed: 

ii pMAXPOPE ⋅=            (2.17) 

Each solution was then copied into the next generation Int(Ei) times, Int(Ei) being the integer part of 

Ei. To complete the new population to MAXPOP individuals, the fractional remainder 
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)( iii EIntER −=   (2.18) 

of each solution was treated as the probability of further duplication with a weighted simulated coin 

toss until the new population was balanced. As this selection is also elitist, special attention was paid 

to the best g-generation individual stored and inserted in g+1 after crossover and mutation were 

performed. 

2.4.2 Recombination (Crossover) 
In binary encoded GAs, crossover exchanges substrings from two different parents, creating two 

children who inherit some of the parents’ genetic material. The classical crossover used in our 

algorithms is a two-point crossover that treats the strings as a ring. It works basically the same way as 

in binary encoding except that, weights, not bits, are exchanged from homologous positions. 

The modified arithmetic crossover employed here is also similar to classical crossover, except that the 

selected genes do not exchange places, but are linearly combined. Starting from two parents, wparent1 

and wparent2, the children wchild1 and wchild2 are initialized as: wchild1= wparent1 and wchild2= wparent2. Then a 

substring schild1 selected with random start point and length from wchild1 is replaced by the vector 

 where s21 )1( childchild tt ss ⋅−+⋅ child2 is the homologous substring in wchild2 and t is a random number 

between 0 and 1. Similarly, a substring schild2 selected with random start point and length from wchild2 is 

replaced by the vector ( 21)1 childchild tt ss ⋅+⋅−  where schild1 is the homologous substring in the initial 

child1. Note that if t = 0, then the arithmetic crossover degenerates to classical crossover. 

The proposed modified arithmetic crossover differs from the classical arithmetic crossover described 

by Krink and Løvbjerg (2002). The latter produces offspring as some linear combination of parents, 

while the former linearly combines only fragments from parents. This modified arithmetic crossover is 

less disruptive than the classical arithmetic crossover by letting unchanged potentially desirable parts 

in individuals to propagate g to g+1. 

2.4.3 Mutation 
Entry l of an individual wl was mutated with a value ∆wl, a uniformly random-generated number 

within a range that reduces during the generational evolution. 
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Consider the monotonic decreasing function : 

)ln(
)ln()ln()(

SMAXSESSION
gSMAXSESSIONgq −

=          (2.19) 

in which g represents the generation attained with GA-GHC, and MAXSESSIONS is a customary 

chosen maximum number of generations to explore. This function is a monotonically decreasing 

logarithmic function of g and takes its maximum value 1 at the first generation (g=1) and its minimum 

value of 0 at the last generation (g=MAXSESSIONS). 

We used this function as an envelope for the amplitude of mutation increment ∆wl by calculating it as: 

)}();({ gqwHighgqwLowrndwl ⋅⋅⋅⋅=∆ γγ        (2.20) 

where rnd{a;b} returns a uniformly random-generated number in the range (a,b), wLow and wHigh  

are, respectively, the lower and higher limits of the interval in which wl is searched, and  γ =rnd(0,1). 

The γ  coefficient was introduced to fluctuate the wideness of the interval from which ∆wl was 

sampled, i.e., to allow a certain number of small mutations. In the above heuristics, the interval 

{wLow, wHigh} was assumed symmetric with respect to 0 (as is the case for neural network weights 

identification) so that ∆wl would be equally likely to be a positive or negative value. This modality of 

computing mutational increment ∆wl allows function optimization in any real definition domain for the 

variable vector w because it embeds information about the domain bounds. 

2.4.4 Benchmarking the GA-GHC optimizer 
Before applying the algorithm to our real problem (liquid holdup neural network training), we decided 

to test it on some benchmark problems to assess its performance. The primary goal in adjusting the 

algorithm’s parameters was to obtain enough search power to solve, with a single set of parameters, 

different problems, such as function optimization and neural network training. A summary of the 

characteristics and parameters of the GA-GHC optimizer is provided in Table 2.1. 
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Table 2.1 Parameters’ set of the GA-GHC optimizer used in all benchmarks and the real problem 

 
Representation real 

Selection stochastic reminder selection 

Fitness scaling linear scaling 

Elitist strategy single copy of the best individual preserved 

Genetic operators  for 2 of 3 generations: -two point crossover pc=0.5 

                                   - low probability mutation plm =0.03 

for 1 of 3 generations: -two point modified arithmetic crossover pc=0.5 

                                   - high probability mutation phm =0.5 

Population size MAXPOP = 50 

Number of generations 

to explore 

MAXSESSION:  problem dependent 

Search range wLow, wHigh : problem dependent 

 
Assessment of the GA-GHC optimizer was performed on three case studies: 

• medium sized multimodal functions optimization (10-30 parameters) 

• large multimodal functions optimization (100 parameters) 

• neural network training (35 parameters)  

The functions selected to test the solving power of the algorithm are very often encountered in 

optimization algorithm benchmarks. They are named after the authors that introduced them as 

benchmark functions (Table 2.2). 
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Table 2.2 Test functions 

Function Search Space 
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The Rastrigin function, f1, has many suboptimal peaks whose values increase as the distance from the 

global optimum increases. The product term in Griewank function, f2, introduces interdependency 

between the variables; this is why this function disrupts the optimization techniques working on one 

variable at a time. The Ackley function, f3, is also multimodal at low resolution. The optimum of these 

functions is located at (f (0,0,..0)=0). 

Table 2.3 Results on test functions with medium dimensions number 

Function Dimensions 

(n) 

Range of 

initialization for all 

parameters 

Minimum reached 

Standard GA (1)  

Minimum reached 

GA-GHC optimizer 

Rastrigin (A=3) 20 12.512.5 ≤≤− ix  6 5.3 

Griewank 10 0.6000.600 ≤≤− ix 0.1 0.081 

Ackley 30 0.300.30 ≤≤− ix  1 0.024 

 

Table 2.3 shows the average over 50 runs of the minimum function value found (best individual) for a 

standard GA and for the GA-GHC optimizer after 100 000 function evaluations. The values for the 

standard GA(1) were extracted (with graph precision) from Potter and De Jong (1994). In this standard 
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GA(1), the representation of parameters is binary, so the crossover exchanges bit substrings between 

individuals in order to create offspring. 

Other performances, referred to as standard GA(2), were recently reported (Krink and Løvbjerg, 2002) 

for real parameter representation and arithmetic crossover. This time, the number of dimensions is 

raised to 100 for all three functions. To make the search for the optimization algorithms more difficult, 

the initial population is asymmetrically initialized with respect to the global minimum. Note also that 

parameter A in the Rastrigin function is augmented from 3 to 10, rendering this function more difficult 

to optimize because of the stretching of the suboptimal peak’s amplitude. Table 2.4 shows a 

comparison between the performances of the GA-GHC optimizer, a standard GA(2) , and a stochastic 

hill-climber (SHC) Krink and Løvbjerg, 2002. The performance measure is, as in the previous 

benchmark, an average over 50 runs of the minimum function value found (best individual), but this 

time, the number of function evaluations is 2 500 000. 

Table 2.4 Results on test functions with large dimensions number 

Function Dimensions 

(n) 

Initialization 

range 

Mimimum 

reached 

Standard GA(2) 

Mimimum 

reached 

SHC 

Minimum 

reached 

GA-GHC  

Rastrigin 

(A=10) 
100 12.556.2 ≤≤ ix  0.539 725.8 50.94 

Griewank 100 
0.6000.300 ≤≤ ix

 175.2 269.9 0.022 

Ackley 100 76.3238.16 ≤≤ ix  0.035 21.2 19.8 

 

The GA-GHC optimizer performs better than the stochastic hill climber (SHC) on all three test 

functions. It exhibits better performance than the standard GA(2) for the Griewank function only, while 

it underperforms for the Rastrigin and Ackley functions. The standard GA(2) uses parameter sets (pc 

and pm) specifically tuned for each individual problem, whereas the GA-GHC optimizer uses the same 

parameter assortment for all benchmarks. 

As the purpose of GA-GHC optimizer is training neural networks, a test was performed on a 

benchmark neural network-training problem having neither monotony nor concavity restrictions. This 
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problem, known as the addition problem (Rumelhart, 1986), involves adding two 2-bit numbers. The 

tested version had two 2-bit inputs, 4 hidden nodes, and 3 output nodes with fully connected layers. 

For this problem, Whitley et al. (1989) compared the performances of their GENITOR algorithm to 

GENESSIS (a classical GA(1) algorithm). GENITOR differs in two major ways from GENESSIS. The 

first is the explicit use of ranking, an improved reproduction operator. Secondly, GENITOR abandons 

the generational approach and reproduces new genotypes on an individual basis. The performance 

measure in this case was the sum of squared errors on all three outputs of the network for the 16 

patterns presented. The number of function evaluations was 100 000 in all cases. GENESSIS only 

reduced error to 5.8 (averaged over 13 runs). GA-GHC optimizer performed noticeably better than 

GENESSIS, reducing the error to 2.95 (averaged over 5 runs), which approaches the performance of 

GENITOR, which achieved 2.48 (averaged over 5 runs).    

In summary, the GA-GHC optimizer has proven to be more effective than standard GA(1) with binary 

encoding. It also outperforms stochastic hill-climber, but performs moderately comparably with other 

improved GAs (standard GAs(2) and GENITOR). 

 

2.5 Methodology validation on liquid holdup modeling  
 

After devising the GA-GHC optimization algorithm and providing the tools for designing neural 

network models that agree with a priori monotonic-concave information, we tackled the real problem 

of liquid holdup ANN correlation in counter-current packed beds. Recently, Piché et al. (2001e), using 

a wide database (1483 measurements) of total liquid hold-up in counter-current packed beds, 

developed a dimensionless neural network correlation. This correlation outperforms, in terms of 

AARE (average absolute relative error) and ARE’s standard deviation (STDEV), almost all previous 

empirical correlations. It is based on a feed-forward neural network, whose inputs are some 

dimensionless numbers built from the dimensional variables characterizing the G-L-S system, i.e., uG, 

uL, ρG, µL, aT, ε , φ, Z, DC, ρL, σL, µG. This approach’s difficulty lies in deciding which dimensionless 

numbers to use as correlation’s inputs. Although the inputs selection can be done automatically with 

GAs (see Chapter 1), the procedure is time-consuming and complex. More importantly, it is unable to 
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guarantee full monotonicity of the networks for the dimensional variables ∈sv  

[uG,uL,ρG,µL,aT,ε ,φ,Z,DC,ρL,σL,µG] because the network inputs, xi, are functions (dimensionless 

numbers, Ni) of the dimensional variables vs.(See proof in Appendix 2). 

The same monotonicity rules, Eqs. (1.20)-(1.25), are used, to which we added the following two rules 

regarding the concavity information:  
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All the dimensional variables that were recorded in the database and which were likely to affect liquid 

holdup were considered model inputs, except for gas density, because the majority of data points 

recorded in the database were at or near atmospheric pressure. For this problem, the monotonicity-

concavity-information matrix, MCI, equivalent to Eqs. (1.20)-(1.25) and (2.21)-(2.22) writes as: 
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To determine the best set of weights for the model εl=f(uG, uL, µL, σL, ρL, aT, ε , φ, Z, DC, µG), the 

global error GErr(w) (Eq. (2.10)) was minimized. Ideally, at the end of the optimization, the penalty 

terms in this criterion would reach zero. The number of hidden nodes was determined by trial and 

error. It was set to J=5 yielding 66 weight parameters. The first population of the GA-GHC optimizer 

was initialized in the range [-1,1], and the signs of the weights were tuned such that the monotony 

penalty was null. All individuals of the first population obeyed the monotonic condition according to 

the MCI matrix. A typical run of the GA-GHC optimizer on this problem is shown in Figure 2.4.  
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Figure 2.4 Monotonic concave NN training with GA-GHC optimizer (α=2.5,β=1.5) 

 

The variables monitored during the generational evolution were GErr and AARE of the best model 

in generation g. The training was done on 1046 training patterns (the training set, T) which represented 

70% of the whole data, while the reminder set (G) was kept to assess generalization of the trained 

models. After ca. 2000 generations, the model AARE attained 15%; however, more than 80 000 

generations were needed before the penalty term for the second derivative of the model with respect to 

gas velocity became 0. Restarting the algorithm several times yielded similar results. The best NN 

model found in the last generation explored by this approach will be referred as the εl monotonic 

model. 

Classical NN training algorithms may not prevent over-fitting because some data are corrupted or 

noisy, the data in the input space is sparse, or the phenomenon to be modeled is complex. This is 

illustrated in Figure 2.5, which compares the εl monotonic model output against the output from an NN 

model trained with BFGS algorithm and early stopping. The two models used the same training data 

and network configuration. 
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Table 2.5 Comparison between two correlations for liquid hold-up 

Model performance or 
characteristics Piché et al. (2001e) 

This work 

εl monotonic model 

AARE T+G 13.8% 14.2% 

STDEV of ARE T+G 14.6% 12.1% 

AARE G 14.0% 14.2% 

STDEV of ARE G 16.7% 12.2% 

No weights 92 66 

Max weight 39.2 9.3 

Min weight -25.15 -12.5 

 

Table 2.5 compares the performances and characteristics of the εl monotonic model to the Piché et al. 

(2001e) model built on the same database. Monotonicity was 100% mathematically guaranteed over 

the whole database space in the εl monotonic model, but not in the Piché et al. (2001e) model. The εl 

monotonic model captured the main tendencies and avoided over-fitting the training samples by not 

following misleading noisy training instances. Both AARE and STDEV (Table 2.5) were virtually the 

same on generalization set (G) and all database (T+G). The fact that the εl monotonic model, obeying 

Eqs. (1.20)-(1.25) and trained with the GA-GHC optimizer, performed equally well in terms of 

prediction error on all data means that (i) monotonicity-concavity information imposed during training 

is truly manifested within the data and is thus a posteriori proof of its correctness (ii) the GA-GHC 

optimizer was robust enough to identify a suitable model. 
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b) 
a) 

 
 
 (µL) - (kg/m.s) σL - (N/m)  ρL - (kg/m3) ε - (-) aT - (m-1) φ - (-) Z - (m) DC - (m) (µG) - (kg/m.s) 

1.82E-03 3.64E-02       9.59E+02 9.77E-01 2.13E+02 7.84E-02 3.00E-01 1.55E-01 1.77E-05 
 

Figure 2.5 Surface implemented by two ANN models a) εl monotonic model b) classically trained model. (In both cases, the same 
training data and network configuration are used. The G-L-S properties for which the outputs were simulated are given in the 
accompanying table. 
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Table 2.6 εl monotonic model: normalized input and output functions and the corresponding weights (Ranges of applicability in 
brackets)* 
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3 1.443E-02 1.031E+00 1.594E-04 -3.653E-01 -4.760E+00
4 1.482E-05 1.885E-04 5.377E-01 -2.250E+00 -3.813E-03
5 -8.727E+00 -2.128E+00 -5.440E-03 3.941E-04 3.382E+00
6 -6.724E-01 6.752E-01 -3.026E+00 2.786E-01 9.740E-01
7 9.128E-07 1.237E+00 7.317E+00 -1.061E+00 -9.538E+00
8 -3.481E+00 2.539E+00 4.182E+00 1.948E+00 3.483E+00
9 -4.268E+00 -2.602E+00 9.403E+00 -3.319E+00 1.622E-01

10 2.750E+00 -3.817E-01 7.484E+00 1.677E+00 -4.596E-01
11 -5.130E+00 6.033E+00 -1.743E+00 1.085E+00 -1.249E+01
12 -4.356E+00
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wj 1 2 3 4 5 6
 9.581E+00   2.980E+00 1.394E+00 -3.117E+00 -5.637E+00 -5.618E-01

*A “user-friendly” spreadsheet of the neural correlation is accessible at: http://www.gch.ulaval.ca/∼grandjean or http://www.gch.ulaval.ca/∼flarachi 
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In terms of AARE, the models performed equally (~14%), whereas in terms of ARE dispersion, the εl 

monotonic model performed better. The improvement in ARE dispersion was much more important on 

the generalization data set on which the real performance of the model should be judged (Flexer, 

1994).  

There were fewer weights in the εl monotonic model: 66 vs. 92 (Table 2.5). The absolute values of 

maximum and minimum weights were good indicators of the model’s capacity to produce smooth 

trends. Smooth output is assured by small weights. 
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UG - (m/s) UL - (m/s) (µL) - (kg/m.s) σL - (N/m) ρL - (kg/m3) 
1.32E+00 2.00E-03 1.82E-03 3.64E-02 9.59E+02 

ε - (-) aT - (m-1) φ - (-) Z - (m) DC - (m) (µG) - (kg/m.s) 
9.77E-01 2.13E+02 7.84E-02 3.00E-01 1.55E-01 1.77E-05 

Figure 2.6 Evolution of model’s concavity with respect to gas velocity during training. The G-L-S 
properties for which the outputs were simulated are presented in the accompanying table. 
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Figure 2.6 shows how model concavity with respect to gas superficial velocity evolved during the 

training cycles. Though an acceptable prediction error for the model was achieved in the early stages, a 

positive second order derivative of the liquid holdup model with respect to gas velocity was obtained 

only after 80000 generations. In fact, the sign of this derivative constitutes not only a 

phenomenological consistency proof, but is also an under-fitting detector. 

Table 2.6 contains the ANN normalized input and output functions and the corresponding weights and 

ranges of applicability of the liquid holdup correlation. A downloadable simulator is available at the 

following web addresses: http://www.gch.ulaval.ca/∼grandjean or http://www.gch.ulaval.ca/∼flarachi. 

A standalone Java application implementing the algorithm is also available. Details on the software we 

developed are given in Appendix 3. 

 

2. 6 Conclusion 
 

A methodology to build neural network models which fulfill a priori information on monotonicity and 

concavity of the function to be learned was developed and presented in this chapter. The relevance of 

this approach was threefold: 

(i) Accurate ANN models may be obtained by directly using the dimensional variables as network’s 

inputs, suppressing the complication with the selection of the fittest dimensionless numbers.  

ii) The network training was performed with a genetic algorithm-genetic hill-climber optimizer, 

designed to direct the search toward monotonic and concave ANN models in agreement with 

prescribed knowledge. 

(iii) A robust correlation having phenomenological consistency in the entire database was issued for 

the prediction of liquid hold-up in counter current packed beds.  

This chapter presented several original elements. Firstly, second order information (concavity) was 

added in addition to the monotonicity information. Furthermore, the training of the network was 

http://www.gch.ulaval.ca/grandjea
http://www.gch.ulaval.ca/flarachi
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performed with an evolutionary algorithm with two new design elements. One of these elements was 

the modified arithmetic crossover; the second one was generational switch between a genetic like 

search and a hill climbing type search. A contribution per-se was the result obtained: the mono-

concave liquid holdup prediction model.  

 

2.7 Notation 
 

aT Bed specific surface area (m2/m3) 

c Number of inputs for which concavity information is available 

conc(w) Concavity function for the network represented by w 

C Scaling coefficient in linear conversion of GErr into fitness 

DC Column diameter 

Ei Expected number of copies of the specimen i 

f(x,w) Neural network function 

fitnessi Functional fitness value for the individual i 

fitness*
i Raw fitness value for the individual i 

g Generation in a GA-GHC run 

Gerr(w) Global error function minimized by the GA-GHC 

Hj Activation function of the j’s neuron in hidden layer 

I Number of inputs in the network 

J Number of nodes in the hidden layer 

m Number of inputs for which monotonicity information is supplied 

mon(w) Monotonicity function for the network represented by w 
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MAXPOP Size of population 

MAXSESSIONS Number of generations to explore 

N Vector whose elements are dimensionless groups 

Ni Dimensionless group computed from the dimensional variables v 

NT Number of pairs (xi,yi) in the training set 

pSi Probability of a particular solution i’s survival  

pc Crossover probability 

plm, phm Low, respectively high, probability mutation rates 

Pmon, Pconc  Penalty functions for monotonicity and concavity respectively 

Ri Remainder of the expected number of copies of an individual i 

t Uniform random number between  0 and 1 

u Phase velocity (m/s) 

vi Dimensional variable describing the properties of the G-L-S system 

wi,j Connectivity weight between the input i and hidden unit j 

wj Connectivity weight between the hidden unit j and the output unit 

w String representation of all connectivity weights wi,j, wj 

wLow, wHigh Minimum and maximum values for weights initialization 

xi ith input vector 

xi ith component of a particular input vector 

ŷ ( xi) Estimate produced by the network for input sample xi 

yi True experimental value for input sample xi 

Z Bed height 

Greek letters 
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α, β Weighting coefficients in global error function 

∆wl Increment to be added to the lth element of the weight string w 

ε Bed porosity 

µ Phase viscosity (kg/m.s)  

ρ Phase density (kg/m3) 

σ Phase surface tension (N/m) 

σ(z) Logistic sigmoid function 

Abbreviations 

ARE Absolute relative error 

AARE Average absolute relative error 

NN Neural network 

G Gas, generalization 

GA Genetic algorithm 

GHC Genetic hill climber 

G+T Generalization and training  

L Liquid 

MCI Monotonicity-concavity information  

PC Phenomenological Consistence Ù matching prior knowledge 

PK Prior Knowledge 

S Solid 

STDEV Standard deviation of ARE 

T Training 
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3. Data classification in multiphase reactors 
 

The first two chapters dealt with the prediction of continuous characteristics. In such cases, the output 

of the ANN directly approximated (a normalized form of) the characteristic we wanted to predict 

based on knowledge of the input variables. In this chapter the focus is on situations in which the 

characteristic to model is categorical; i.e., it might take a finite number of discrete values. In this case 

the neural network is designed to approximate the probability of each occurring class, given a 

particular observed realization of the input vector (posterior probability).  

As in the problems of regression, the methodological study was made on some concrete multiphase 

reactors data sets that we had at our disposal. More specifically, the case studies here are the flow 

regime classification in trickle bed reactors and the bed initial expansion or contraction in three-phase 

fluidized beds. In addition to these data sets, other publicly available real data sets or simulated data 

sets were analyzed. The three primary problematics remain: feature selection, inclusion of prior 

knowledge, and model design. However, there are some differences in the way these key aspects of 

modeling are addressed. First, some statistical approaches are considered along with the neural 

networks. Their use is twofold: i) to help identify relevant features for the classification problem, as 

they may be lighter in terms of computation required, ii) to give a comparison basis for the neural 

network approaches. Second, we consider only the dimensional approach; i.e., the features used in the 

models are the original, untransformed, but scaled variables. Even though these features are less 

numerous than the possible dimensionless groups from which they can be built, we are still concerned 

with the feature selection problematic. This problematic is viewed from the statistical pattern 

recognition point of view, rather than the neural networks perspective. Third, the feature selection step 

is treated separately from the remaining two problematics, i.e., model design with prior knowledge 

incorporation. We first determine the most relevant features for predicting the class variable using 

different relevance criteria, and then search for an accurate, robust classification model. 

The material in this chapter is divided into two sections. The relevant bibliographical review will be 

made for each section respectively. 
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3.1 Feature selection methods for multiphase reactors data classification 

3.1.1 Bibliographical review  
Chemical reactor engineering faces the challenging task of extracting knowledge from data, which 

increasingly becomes more available and accurate. The goal for researchers and engineers is to 

anticipate and predict the behavior of complex systems such as the multiphase reactors, which still 

challenge the current physically-based first-principles approaches (Dudukovic et al., 2002). One 

problem often encountered is accurately identifying the state of a particular system, given prior 

information in the form of measurable observations. When the state to be predicted takes the form of a 

categorical variable, the problem is known as a classification problem. 

In spite of several decades of research in the area of pattern recognition dealing with the general 

classification issue, a general purpose machine pattern recognizer remains undesigned. Provided 

enough data samples are available, this process splits into two steps: feature selection, followed by 

classifier design. The first refers to the task of selecting, from among all the candidates, a limited 

number of features (or variables) which are the most relevant to the classification task. The second 

refers to the choice and design of a particular inference engine (classifier) than can learn from data and 

make reliable predictions in new situations. Feature selection is critical in reducing classifier 

complexity and cost and improving model accuracy, visualization, and comprehensibility of induced 

concepts. 

Suppose that n examples (or instances) ωk, k = 1…n, represented by the input vector xp(ωk) = 

(xk,1,xk,2,…,xk,p) and the label of class y(ωk), are available. (Here y = 1, 2…Nc , are particular values of 

the generic class variable denoted Y, Nc being the number of classes). Using this dataset, we may want 

to design a classifier able to assign the correct class label y for a new instance ω’. Prior to design, a 

feature selection step is required, as we do not know a priori which among the p available features are 

important in the classification. Selecting only a reduced number d of features among all p, d<p, is 

attractive because the classifier performance depends on the interrelationship between the sample size 

n used for learning, the number of features d, and the classifier complexity (Jain et al., 2000). As 
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discussed by Bishop (1995), the number of learning samples needs to be an exponential function of the 

feature dimension, so there is an obvious interest in keeping d as low as possible. 

Selection of a good feature subset may be of little interest when the number of training samples is 

sufficiently large and representative (or equivalently, when the class-conditional probability density 

functions are fully known). In this case, the probability of misclassification does not increase as the 

number of features increases (Sebban et al., 2002). In practice, however, added features can degrade 

the classifier performance when n is relatively small with respect to the number of features. This 

behavior, known as peaking, occurs when for a given sample size (n), supplementary features increase 

the number of classifier parameters, thereby reducing classifier reliability (Jain et al., 2000). In these 

instances, low-dimensional pattern representations are more advantageous in terms of cost and 

accuracy. Notwithstanding, excessive reductions in the number of features can alter classifier 

discrimination power and inflate inaccuracy. 

Feature extraction and feature selection are the two main methodologies used in dimensionality 

reduction. The former refers to algorithms generating a reduced number of new features based on 

transformations of original features, e.g., principal component analysis. The resulting variables usually 

lack physical sense and are thus not easily interpretable. Feature selection algorithms, on the contrary, 

target the best d-subset among the available p features without features alteration. For this reason, this 

is this category of algorithms explored in this multiphase reactor classification problems study. 

There exist two generic approaches for feature selection, termed by John et al. (1994) as filter and 

wrapper techniques. Filter model, through statistical techniques, are indicative of the accuracy of 

potentially induced classifiers. They “filter out” irrelevant features before the induction process, and 

are usually fast (absence of training). A common quality criterion in filter models is the Shannon’s 

mutual information, I(Y|Xs), which measures the information provided by Xs on the class variable Y 

(see Shannon and Weaver, 1949; Ash, 1990). In wrapper model, good subsets Xs are searched using 

the induction algorithm itself where the accuracy rate (AR), estimated by holdout, cross-validation, or 

bootstrap, is to be maximized. Here, more CPU time is needed, and the solution depends on the 

particular classifier. 

Once an appropriate relevance criterion J is defined, the problem of feature selection can be 

formulated as follows: given a set of p features, select a subset of size d that maximizes J. 
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The simplest approach is to examine all  possible combinations and choose that with the largest J 

value. But even for moderate p and d values, such an exhaustive search may become impractical. Most 

currently used methods evaluate only a fraction of combinations, providing speed, but not 

guaranteeing optimality of solution. A second simple method would be to select the best d individual 

features as an approximate solution to the feature selection problem. Using the mutual information 

criterion, Batitti (1994) selected the inputs for a neural network classifier. Inter-feature mutual 

information was considered for selecting features both informative about the class Y and relatively 

independent of each other.  

d
pC

Most current feature selection algorithms are sequential methods. The sequential forward selection 

(SFS) is an example. With SFS, the best single feature is first selected. Then, an extra feature is added 

which, combined with the already selected features, maximizes criterion J. SFS, in conjunction with 

the mutual information criterion, was implemented by Sridhar et al. (1998) to select inputs for neural 

networks in functions approximation. The main distinction here with respect to the work of Batitti 

(1994) was the possibility of identifying jointly important features, albeit at the expense of a 

supplementary computation overhead. 

The heuristic basis of most sequential feature selection algorithms is the assumption that the criterion J 

is monotonic; i.e., any change in feature set size (and therefore feature set information content) is 

positively correlated with the change in J. If this is true when J is the mutual information, it is not 

always the case with other criteria, such as the accuracy rate AR (or its complement, the prediction 

error) (Pudil et al., 1994). In this case, sequential selection methods with backtracking such as the 

“plus-l-take-away-r” (or (l,r) search) method (Stearns, 1976) or its improved version, the sequential 

floating forward selection (SFFS) (Pudil et al., 1994), are more suitable. These methods first enlarge 

the feature subset by l features using SFS, and then delete r of them one by one. The feature withdrawn 

at each step is that which causes the smallest decrease in J. Though computationally more demanding 

than SFS (because more combinations are being evaluated), such methods are more efficient in 

conjunction with non-monotonic criteria (Pudil et al., 1994). 

The single “optimal” technique (optimal only if J is monotonic) is based on the Branch and Bound 

algorithm (Narendra and Fukunaga, 1977), which avoids an exhaustive search by using intermediate 

results for obtaining bounds on the final criterion value. Because this algorithm involves evaluating a 
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quantity of possibilities that is still an exponential function of the number of variables (p), and because 

the monotonicity criterion does not hold here, the Branch and Bound was not considered in this study. 

Other feature search methods, such as those based on genetic algorithms (GA), have been proposed for 

classification (see Siedlecki and Sklansky, 1988).  

An alternative method for determining the most important features for a classification task is the 

Garson method (1991) of interpreting the weights of neural networks. In this method, a feed-forward 

neural network is trained to learn the mapping Y(Xs). Then a saliency index for each input of the 

network is computed. This index is calculated by assessing the share of weights associated with each. 

This method was experimentally evaluated by Nath et al. (1997), who concluded that the method had 

potential merit. 

3.1.2 Study objective and organization  
The objective of section 3.1 is to examine the extension of feature selection algorithms in two 

classification problems relevant to the field of multiphase reactor engineering: flow regime assignment 

in trickle-bed reactors (LIR, TR, and HIR) and identification of bed initial expansion/contraction (IBE, 

IBC) in three-phase fluidized-bed reactors. The ability of these methods to provide good solutions 

(elite subsets Xs) that agree with each other was investigated on two benchmark problems: a synthetic 

problem and the Anderson’s iris data classification problem. For these two cases, a priori knowledge 

of the relevance of the features was available. Furthermore, a new feature selection algorithm which 

mixes filter and wrapper algorithms was devised. 

 Table 3.1 summarizes the four methods (M-I through M-IV) tested in this work, in order to identify 

the subset Xs (of size d), instead of the whole feature subset Xp, to be used in classification. The 

method of Garson (1991), referred to as M-V method, is not shown because it shares nothing in 

common with this classification of methods M-I to M-IV, except perhaps the fact that it needs training 

of the classifier (common to wrappers). 
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Table 3.1 Feature selection strategies 

             Criterion to 
                maximize (J) 

 
      Selection 
      method 

Mutual information 
(information theory) 

J=I(Y|Xs) 
 
 

Accuracy rate of a 
 1-NN classifier 

AR(1-NN) 
 
 

 
I(Y|Xs) and AR(1-NN) 

 
 
 

Sequential Forward 
Selection (SFS) 

Yes (M-I) 
(filter method) 

Yes (M-II) 
(wrapper method) 

plus-l-take-away-r 
 

No (Not necessarily 
justified, as J is 

monotonic) 
Yes (M-III) 

(wrapper method) 

Yes (M-IV)  
SFS with I(Y|Xs) 

continued by 
(l,r) search with AR(1-NN)

(filter-wrapper method) 
 

 
 

A “Yes” entry in Table 3.1 means that the selection algorithm specified by the row header in 

conjunction with the criterion specified by the column header is tested.  

The classifier used to assess the importance of sets in methods M-II to M-IV is the one-nearest 

neighbor (1-NN) classifier. Its performance is evaluated by five-fold cross validation. Inherent details 

unfold in the following sections. A further extension of this work would be to build simple, reliable, 

and interpretable classifiers using as input variables the solutions Xs found within this study. We could 

provide a new brand of design tools as an alternative to the existing first-principle based models that 

are still unsatisfactory. This constitutes the scope of the section 3.2. 

 

3.1.3 Relevance assessment 
A feature selection algorithm decides to retain or drop features based on their relevance. There are 

several definitions of relevance, each addressing the question “relevant to what?” (e.g. John et al., 

1994). Here, the relevance of a feature subset Xs in predicting the class variable Y is judged using three 

measures: 

a) Mutual information I(Y|Xs) between the feature vector Xs and the class variable to be predicted Y 
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b) Accuracy rate of a 1-NN classifier AR(1-NN) that uses Xs as discriminatory features 

c) The saliency index of Garson (1991). 

Note that the a) and b) relevance measures, in conjunction with a selection algorithm such as SFS or 

(l,r) search, identify the d-subset Xs to use for predicting class membership without sacrificing the 

discrimination power involving all p features. The Garson’s saliency index, on the other hand, judges 

only the relevancy of each feature if the whole Xp set is used as a neural net input. This mostly 

provides a relevance order for all features in Xp, i.e., features-ranking rather than indications on which 

Xs subset is the most pertinent for classification. 

3.1.3.1 Mutual information 

Recall first that the records ωk have an input vector, from which is selected a features subset 

xs(ωk)=(xk,1,xk,2,…,xk,d) of cardinality d, and a (class membership) label y(ωk). A classifier that uses Xs 

to predict the class Y decreases its initial uncertainty by using the information in the features of Xs. 

Due to insufficient input information or sub-optimal operation of the classifier, the uncertainty about 

the class cannot be decreased to zero. Shannon’s information theory (Shannon and Weaver, 1949; Ash, 

1990) gives a suitable formula for quantifying these concepts. 

If the probability that the class variable Y takes a particular value y is denoted with P(y), y=1,2…Nc, 

the initial uncertainty in the output class variable is given by the entropy: 

)(log)()(
1

yPyPYH
Nc

y
∑

=

⋅−=    (3.1) 

Practically, the probability P(y) can be estimated using the occurrence frequency of y: 

n
n

yP y=)(             (3.2) 

where ny is the number of occurrences of y, and n is the total number of samples. 

The entropy of the features vector Xs can be similarly estimated. Since features are continuous 

variables, the sum is replaced by an integral: 
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ssss dPPH XXXX )(log)()( ∫ ⋅−=          (3.3) 

The simplest way to estimate P(Xs) is by using histograms. First, each feature Xs, among all d 

constituting Xs, is discretized into a large number of intervals, nbx. For simplicity, the same number of 

intervals is used for each feature. The hypercubes with the volume dV dsss dXdXdX ,2,1, ...××= are 

called bins. Bins construction is exemplified in Figure 3.1 for a 2-D set of features.    

1,sdX

2,sdX

Xs,2

Xs,1 

Figure 3.1 Bins construction: Suppose a 2-feature vector Xs. Here a bin is the volume 
. 2,1, ss dXdXdV ×=

 

Consider now each of the nbxd bins, and count how many samples, among all n, fall into each bin. For 

all bins, b=1... nbxd probabilities 
n
nP b

bs =⊂ )(X  (nb = number of samples falling in bin b) of Xs 

occurring in a particular bin b are evaluated. The entropy H(Xs) is computed using a discretized form 

of  Eq. (3.3): 

 )         (3.4) (log)()(
1

bs

nbx

b
bss PPH

d

⊂
=

⊂∑ ⋅−= XXX

The average uncertainty on Y after knowing the feature vector Xs with d components is the conditional 

entropy : )|( sYH X
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)(),()|( sss HYHYH XXX −=          (3.5) 

where  is  the joint entropy estimated using a similar box counting procedure: ),( YH sX

),(log),(),(
1 1

yPyPYH bs
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b

N
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bss

d
c

⊂
= =

⊂∑∑ ⋅−= xXX        (3.6) 

in which is the joint probability that X),( yP bs ⊂X s belongs to bin b and Y takes the value y. 

By definition, the amount by which the uncertainty is decreased is the mutual information I(Y|Xs) 

between variables Y and Xs (Batitti, 1994): 

)|()()|( ss YHYHYI XX −=          (3.7) 

This function, symmetric with respect to Y and Xs, can be reduced to: 

∑∫
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XXXX       (3.8) 

The uncertainty H(Y,Xs) in the combined events (Y,Xs) is usually less than the sum of the individual 

uncertainties H(Y) and H(Xs). Using Eqs. (3.7) and (3.5), one obtains a symmetric function: 

),()()()|( sss YHHYHYI XXX −+=         (3.9) 

In function approximations, Sridhar et al. (1998) derived an asymmetric dependency coefficient by 

dividing Eq. (3.9) r.h.s. by H(Y). We adopted this normalization here. In these circumstances 

 means that X0)|( =sYI X s contains no useful information about the class Y, whereas 1)|( =sYI X

)|( sYI X

)|( sYI X

 

means that Y is completely predictable if Xs is known. In practice, however, the value of  also 

depends on grid coarseness (or number of bins). Coarser grids probably inflate inaccuracy of  

because important functional variations might be overlooked, while finer grids often overestimate 

 by counting noise as meaningful functional variation. )|( sYI X
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3.1.3.2 1-NN classifier accuracy rate 
The nearest neighbor classifier is one of the simplest methods used to perform non-parametric general-

purpose classification. Proven to give accurate results on many pattern recognition problems (Jain et 

al., 2000), it can be represented by the following decision rule: assign a new pattern to the class of its 

nearest example in the training set as measured by a metric (usually Euclidian) distance.  The 

Euclidian distance between two points a and b is simply: 

( )∑
=

−=−=
d

i
iiE bad

1

2),( baba          (3.10) 

As it requires no training, the nearest neighbor classifier was used in this study to assess the capability 

of a subset Xs drawn from the larger Xp set to predict the class Y. 

One method used to estimate the accuracy rate AR of a classifier is to compute its confusion matrix on 

several z-fold cross-validation sets (Kohavi, 1995 for cross-validation issues). Consider a set A of 

records ωk, k=1...n, available for the classification task. Each record ωk is represented by the feature 

vector xs(ωk) and label y(ωk). Let set A be partitioned in say z = 5 folds. Each fold, once per time, is set 

aside as a test set, while the ensemble of remaining z-1 sets are taken as training set. For each test set, 

the confusion matrix of size (Nc×Nc) synthesizes the predictions of the classifier in the form: 

. 

edicted

Actual

Pr

9055
157510
101080

















For illustration here, a three-class classification problem in which there were 100 samples in each class 

in the test set was considered. Each cell of the confusion matrix indicated how many of the 100 

samples were assigned to class y, labeled column-wise. The actual (true) class index is indicated by 

row. Note that the sum over each row is equal to 100. For convenience, each element in a row of the 

confusion matrix can be normalized by the number of samples in the class indicated by the row’s 

index. As there are z test sets, we computed the mean confusion matrix, as well as the standard 

deviation, over the z sets. The elements lying along the main diagonal of the confusion matrix provided 

the per-class accuracy rate. Their averaged value is the global accuracy rate AR of the classifier.  
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3.1.3.3 Garson’s saliency index 
The third criterion to be implemented was the saliency index Sind (Garson, 1991), which determines the 

importance of the candidate features by interpreting the weights of feed-forward neural networks 

(Figure 3.2) trained with back-propagation algorithms (Rumelhart et al., 1986). The Garson method 

determines which input nodes (and thus features) are responsible for most of the output changes. 

 

Figure 3.2 Feed-forward neural network used for classification involving Nc classes 

 

All the features in the set Xp are fed into the network by the input nodes, which preprocess the data by 

normalizing it to the [0,1] interval. The J hidden units perform a nonlinear projection of the feature 

space, and the output layer decides into which class a particular input point is assigned. The number of 

output nodes equals the number of classes. For a 2-class problem, a single network output suffices. 

The parameters w[i,j] and w[j,k] on the inter-layer connections are the network weights. Network 

training is meant to optimize such weights in a way that when a particular record ω, belonging to the 

class k, is presented as input, the network output vector [O1,O2,…ONc] shows (nearly) zero elements 

except for the kth component which will be 1 (or near to). 

Saliency Sind(i,k) of input i with respect to output k is estimated as follows: First, each hidden-to output 

weight w[j,k] is incorporated into the input-to hidden weights w[i,j]. Then, for each input variable, a 

summation is made over all hidden units and converted into a percentage of the total for all input 

nodes: 
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where i=1,2,…, p input variables; j=1, 2,…J sweeps the hidden nodes and |.| means absolute value. 

In Garson’s work, however, situations in which there are more than two classes (and thus more than 

one output node) were not treated. We proposed, therefore, to generalize the Eq. (3.11) to cases where 

there were Nc classes. We computed therefore, an overall saliency Sind(i) for each input node and 

multiple-output neural networks (k=1, 2, …, Nc) as: 

∑
=

⋅=
cN

k
indcind k)(iS/N(i)S

1
,1    (3.12) 

The logic behind Eq. (3.12) is that the importance of an input variable should be judged by its impact 

on the whole output layer. 

 

3.1.4 Feature selection methods 
Let us now present the methods for solving the following feature selection problem: 

Given a set Xp of p features, select subset Xs of size d, pd ≤ , that maximizes the relevance criterion J.  

Of techniques introduced in the beginning of section 3.1.1, we shall focus only on the class of 

sequential methods: sequential forward selection (SFS), sequential backward selection (SBS), and (l,r) 

method that were effectively implemented in this work. 

SFS and SBS are step-optimal because only the best feature is always added. A limitation inherent to 

these two methods is their inability with the nested feature combinations to correct decisions in later 

steps, creating therefore sub-optimal subsets with lower J. Stearns (1976) combined SFS and SBS to 
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avoid the nesting effect, bringing thus a net improvement to the sequential methods. This combined 

method, referred to as (l,r) method, repeatedly applies SFS l times, followed by r SBS steps, until the 

required number of features is reached. The (l,r)-search algorithm, or its particular cases (1,0)-search 

(or SFS) and (0,1)-search (or SBS), as described by Pudil et al. (1994), is detailed in Appendix 4. The 

termination criterion (Appendix 4) is based on a priori knowledge of d, i.e., size of best subset. As in 

our problems, p is not large, so termination is set for d = p. The best  subset is retained according 

to either modality: a) mutual information based criterion J: d is chosen which yields

ds,X

ζ≤− )( ,dsJ X1 , 

with ζ  a very close to zero threshold value; b) AR (1-NN) based criterion J: d is chosen as 

. )(max ,isi
Jd X= arg

The (l,r) method was further improved by automatically tuning l and r values by Pudil et al. (1994). 

Their so-called sequential floating forward selection (SFFS) consists in applying a number of 

backward steps after each forward step, provided the resulting subsets are better than the previously 

evaluated ones for the same size d. Using the mutual information as relevance criterion, SFS promises 

 will always increase through adding supplementary features. This relevance criterion, 

combined with SFS, has been used to identify neural net inputs (Sridhar et al., 1998), albeit not in 

classification problems. Earlier work sketching the use of to select inputs for neural network 

classifiers used mutual information between the individual features X

)|( sYI X

)|( sYI X

s,i and the class Y, to assess the 

relevance of the whole subset Xs (Battiti, 1994). However, that approach did not promote jointly 

relevant variables as we have here. 

Conversely, if AR(1-NN), which is a non-monotonic criterion, is used as a relevance measure, the (l,r) 

search is more appropriate, since it is able to reconsider previous decisions. The use of  

enabled us to find the subset X

)|( sYI X

s that yielded about the same information about the class Y as the entire 

set Xp. But  is a statistical measure of the general dependency between X)|( sYI X s and Y, and not the 

classifier accuracy itself. Therefore, it does not guarantee that the resulting Xs will actually be 

paralleled by the best accuracy rate of the1-NN classifier. However, the mutual information filter 

criterion is faster in execution than a classifier training session because it does not require iterative 

computation on the dataset. 
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As  evaluates the intrinsic properties of the data, rather than interactions with a particular 

classifier, the result should exhibit more generality; i.e., the solution will be “good” for several types of 

classifiers. On the contrary, using AR(1-NN) relevance criterion is more computationally intensive and 

rests on the capability of this particular classifier to exploit those features in the classification task. 

However, the wrapper criteria possess a mechanism to avoid overfitting; they also generally achieve 

better recognition rates than do filters, since they are tuned to the specific interactions between the 

classifier and the dataset.  

)|( sYI X

Hence, M-IV method (Table 3.1) was devised as an alternative in this work. It first selects an initial set 

of predictive features Xs,initial identified by SFS in conjunction with . The M-IV method then 

“grows up” and “prunes down” this set with a (l,r) search in conjunction with AR(1-NN). First This 

method is faster than launching an (l,r) search in conjunction with AR(1-NN) starting with an empty 

set. This is because is easier to compute than AR(1-NN) and because SFS is more rapid than 

an (l,r) search. The further adjustments of the resulting selection X

)|( sYI X

)|( sYI X

s,initial allow deletion or addition of 

some features which appear to be respectively less or more important for the nearest neighbor 

classification rule.  

3.1.5 Problems and datasets description 
The four problems tested are presented next to i) compare the feature selection methods (M-I to M-IV) 

and judge their efficiency to identify the relevant features ii) identify the most predictive variables in a 

couple of actual multiphase reactor problems, namely flow regime classification in trickle beds and 

initial bed expansion/contraction classification in three-phase fluidized beds. 

3.1.5.1 Synthetic problem 
A synthetic domain problem, in which the correct answer is known a priori, was built. The setup is: 

Generate three sets of 100 10-dimensional data points. In each set, the ten variables are random 

normally distributed. The mean for each feature in each class (c1 to c3) was set as shown in Table 3.2 
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Table 3.2 Candidate features in a synthetic problem 

Var 
No. 

Mean for 
class c1 

Mean for 
class c2 

Mean for 
class c3 

Relevance 
rank 

1 3 0 -3 1 
2 4 0 0 2 
3 0 0 4 2 
4 1 0 0 3 
5 0 0 1 3 
6 1 0 1 3 
7 0 0 0 4 –irrelevant
8 0 0 0 4 –irrelevant
9 0 0 0 4 –irrelevant

10 0 0 0 4 –irrelevant
 
 

The single most relevant variable is 1, as the average interclass distance between the central points of 

the normal distributions was the largest for this variable. The two most important features are 1 and 3 

(according to the same class separability measure), and the best three features are {1,3,2}. The 

variables 4, 5, 6 were equally important to the classification task but are far less important than the 

previous variables. Features 7-10 are irrelevant to the classification task, as they are normally 

distributed random variables with the same 0 central value for each class. This problem was considered 

only for benchmarking purposes. We expect that the features {1,3,2} will successfully be identified by 

the feature selection methods M-I to M-V. A similar setup was used by Nath et al. (1997) to evaluate 

the efficacy of Garson’s method when ranking features in a classification problem. However, the setup 

we chose here is more realistic, as we introduced redundant features in the set, and the overlap 

between classes was higher. 

3.1.5.2 Anderson’s iris data 
Anderson (1935) famous iris data is a collection of 150 4-dimensional data points, each falling into 

one of the three classes:  Setossa (Se), Versicolor (Ve), or Virginica (Vi). In each class there are 50 

data points.  The independent variables considered as candidates are shown in Table 3.3 
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Table 3.3 Candidate features for the iris data classification 

No 
Variable 

Name Symbol max min 
1 Sepal Length SL 7.9 4.3 
2 Sepal Width SW 4.4 2 
3 Petal Length PL 6.9 1 
4 Petal Width PW 2.5 0.1 

 
 

The class Se is easily separable from the other two, which are overlapping classes. Features 3 and 4 

can jointly play the roles of features 1 and 2, as shown by Li et al. (2002). Using a neuro-fuzzy 

classifier, they were able to classify data and simultaneously reveal its important features. For this 

classifier, only the features {3,4} brought the same prediction accuracy as variables 1 to 4. This does 

not imply that this is incontestably the best unique subset of features for all other types of classifiers as 

well. Batitti (1994), for example, showed that subset {1, 3} (or {1, 4}) is the best in terms of 

information content and for a multilayer feed-forward neural network classifier. It is expected, thus, 

that the feature selection methods tested will point to one of these answers: {3,4} {1,3} or {1,4}. 

3.1.5.3 Three-class flow regimes classification in trickle beds 
The first real classification problem in the domain of multiphase reactors concerns a trickle-bed reactor 

in which the gas (G) and liquid (L) are flowing concurrently downwards throughout a bed of catalytic 

solid (S) particles. The efficiency of such a device is highly dependent on the prevailing flow regime in 

the reactor for a given set of operational conditions (Dudukovic et al., 2002). Depending on the level 

of interaction between fluids, one may generally distinguish three flow regimes: low interaction regime 

(LIR), transitional regime (TR), and high interaction regime (HIR). The flow regime, therefore, is the 

class variable Y which takes particular values y = 1, 2…Nc. Here, y = 1 for LIR,  y = 2 for TR, and  y = 

3 for HIR, while Nc = 3. The type of flow regime is often determined by the available p features that 

characterize the three phases (G-L-S), e.g., porosity, sphericity, gas density, liquid viscosity, fluids’ 

superficial velocity, etc., which are contained in Xp = (X1,X2,…,Xp). The assignment of class label 

(LIR, TR, and HIR) to a particular operating point was based on the visual observation of the 

experimenter.  
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2809 flow regime data points (945 LIR, 945 TR., and 919 HIR) were extracted from the Laval 

University comprehensive trickle bed reactor database (Larachi et al., 1999). The independent 

variables considered as candidates are summarized in Table 3.4 along with the span over which the 

measurements were available.  

Table 3.4 Candidate features for flow regime class prediction in trickle beds 

No Variable Name Symbol Max Min 
1 Liquid superficial velocity (m/s) uL 1.74E-01 4.36E-04 
2 Gas superficial velocity (m/s) uG 3.74E+00 4.98E-04 
3 Foaming property (-) Foam.* 1 0 
4 Column diameter (m) Dc 5.10E-01 2.30E-02 
5 Bed porosity (-) ε 7.40E-01 2.63E-01 
6 Grain specific area (m-1) aG 5.16E+03 4.67E+02 
7 Bed specific area (m-1) aT 3.81E+03 2.78E+02 
8 Effective particle diameter (m) dp 1.28E-02 1.16E-03 
9 Sphericity (-) φ 1.00E+00 3.36E-01 
10 Liquid density (kg/m3) ρL 1.18E+03 6.50E+02 
11 Liquid viscosity (Pa.s) µL 6.63E-02 3.10E-04 
12 Surface tension (N/m) σL 7.62E-02 1.90E-02 
13 Gas density (kg/m3) ρG 1.16E+02 1.60E-01 
14 Gas viscosity (Pa.s) µG 1.97E-05 1.45E-05 

(*) Foaming property is a categorical variable. 0=coalescing, 1=foaming 
 

 

In the working database, the variables were normalized to fall between 0 and 1. For variables covering 

more than 2 decades, log values were used. The classes to be predicted were low interaction regime 

(LIR), transition regime (TR), and high interaction regime (HIR). 

3.1.5.4 Two-class bed expansion/contraction in three phase fluidized beds 
The second problem refers to the initial bed expansion (IBE) or contraction (IBC) in a gas-liquid-solid 

fluidized bed. This phenomenon occurs upon introduction of a tiny gas flow rate in a liquid fluidized 

bed and is an important indicator of the bubble wake activity and bubble size. Large bubbles are 

associated with large wakes that suck liquid into their structures, thereby inducing liquid starvation in 
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the emulsion phase and making the bed contract. On the contrary, small bubbles are associated with 

small (or no) wakes that barely affect the emulsion liquid; the bed thus expands smoothly with further 

increasing gas throughputs. Similarly, the class variable Y referring to IBE (y = 1) or IBC (y = 2) may 

depend on the p features characterizing the three phases (G-L-S) grouped in input vectors Xp for which 

we have measurements.  

Our goal here is to identify the features that help determine whether initial expansion or contraction 

of the bed will occur. The porosity dataset was extracted from the Laval university three-phase 

fluidization database (Larachi et al., 2001) after analyzing the behavior of several porosity series at 

constant liquid velocities uL and increasing gas velocities uG. From each series, the observation 

corresponding to the smallest uG was retained. The class was considered expansion (IBE) if bed 

porosity increased with respect to uG in the initial liquid-fluidized state, or, conversely, contraction 

(IBC) if bed porosity decreased. As expansion data points were about thrice the contraction ones, two 

replicates of the contraction points were made to keep about the same number of samples for each 

class.  

Table 3.5 Candidate features for the bed contraction-expansion in fluidized beds 

No Variable Name Symbol Max Min 
1 Liquid velocity (m/s) uL 2.60E-01 1.09E-03 
2 Liquid density (kg/m3) ρL 1.62E+03 7.78E+02 
3 Liquid viscosity (Pa.s) µL 7.19E-02 7.16E-04 
4 Surface tension (N/m) σL 7.59E-02 2.48E-02 
5 Solid density (kg/m3) ρs 2.90E+03 1.07E+03 
6 Effective particle diameter (m) dp 1.54E-02 6.50E-04 
7 Terminal velocity (m/s) ut 7.84E-01 4.32E-02 
8 Column diameter (m) Dc 2.18E-01 4.00E-02 
9 Bed height at rest (m) H0 6.00E+00 5.08E-02 
10 Foaming property (-) Foam.* 1 0 

(*) Foaming property is a categorical variable. 0=coalescing, 1=foaming 
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The dataset counted 401 contraction points and 414 expansion points. The candidate features are 

summarized in Table 3.5. 

3.1.6 Results 
In this section are the results obtained by applying feature selection methods M-I through M-IV and 

feature ranking method M-V to the four problems described above. For each problem, we have 

provided solutions found using the different approaches: 1) which Xs subset produces about the same 

discrimination power as the whole Xp set (for M-I to M-IV), 2) what is the rank of variables 

importance (M-V).  

3.1.6.1 Synthetic problem 
As explained in § 3.1.5.1, we expected the features subset {1,3,2} to be identified. First, SFS with 

mutual information as a relevance criterion (method M-I) was used. Figure 3.3 shows the result 

obtained by applying this filter method on the synthetic problem. The number of divisions in the 

domain for each feature was nbx=10. The “+”sign before feature label indicates that the feature was 

added to the combination at the corresponding epoch. 

 

Figure 3.3 Sequential forward selection with mutual information as relevance criterion (M-I). “+” 
means that the corresponding feature was added to the current subset. 
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As expected the first selected features were {1,3,2}, which contained almost all information available 

in the set of features Xp={1,2,…,10}. Once feature 2 was added into the combination, further 

enlargement of the feature set yielded no significant increase in the relevance criterion J. Applying 

SFS with the alternate relevance criterion AR(1-NN) (method M-II) induced the same order of 

preference for the first three variables, features set {1,3,2}. See Figure 3.4. After adding the third 

variable, the accuracy rate did not increase significantly; on the contrary, it started decreasing after the 

sixth epoch. 

 

Figure 3.4 Sequential forward selection with accuracy rate as relevance criterion (M-II). “+” means 
that the corresponding feature was added to current subset. 

 

Method M-III consisting of (l,r) search with AR(1-NN) as relevance criterion was also tested. In this 

work, l=2 and r=1 were chosen, as they required the minimum computational effort. At each step, two 

features were added and one was removed. The suggested selection subset Xs was also {1,3,2}. This 

example was therefore too simple to show any difference in the searching power between SFS and (l,r) 

search. The filter/wrapper approach (method M-IV) yielded the same solution as M-III, but with less 

computation effort. 

The saliency index values calculated with Eq. (3.12) (method M-V) are shown in Figure 3.5.  
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Figure 3.5 Saliency values for the synthetic problem (M-V) 

 

Here the mean saliency values over 10 distinct ANN training sessions for all 1 to 10 features and 

different numbers of hidden nodes were computed. At each training session, 4000 iterations of back-

propagation with adaptive learning rate and momentum were used for a feed-forward neural network 

with sigmoid transfer functions in hidden and output neurons using 75% of the 300 available points. 

For a number of hidden nodes between 2 and 8, the accuracy rate AR(ANN) of the neural network 

classifier evaluated on the generalization set (remaining data 25%) approached 98%. It may therefore 

be concluded that the network was not overfitting the training samples when the number of hidden 

nodes was less than 8, nor was it underfitting when the number of hidden nodes was equal or more 

than 2. 

As seen in Figure 3.5, the saliency values for the first three features clearly outperformed the others, 

denoting their importance in the classification process. However, saliency index calculation does not 

help to confidently rank them. Furthermore, the other somehow significant features, 4 to 6, appeared 

less relevant than the group of completely irrelevant features 7 to 9.  We may thus conclude that the 

Garson method can indicate the rank only if differences in the importance of variables is large.  
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The synthesis results of this problem are sketched in Table 3.6. To conclude, all methods produced the 

same result.  

Table 3.6 Summary of methods M-I to M-V for the synthetic problem 

Selection strategy #of var. Order AR 
(1-NN) (%) 

None (all available features 
considered) 

10 NA 97.33 

M-I: Forward selection 
with I(Y|Xs). (nbx=10) 

3 1 3 2 ( 4 5 6 7 8 9 10)* 98.33 

M-II: Forward selection 
with AR(1-NN). 

3 1 3 2 ( 4 5 6 7 8 9 10) 98.33 

M-III: (l,r) search with 
AR(1-NN). 

3 1 3 2 ( 4 5 6 7 8 9 10) 98.33 

M-IV: Forward with 
I(Y|Xs) continued with (l,r) 

search with AR(1-NN). 

3 1 3 2 ( 4 5 6 7 8 9 10) 98.33 

M-V: Garson’s saliency 
values through ANN 

NA (1 2 3)    (4 5 6 7 8 9 10) 
 

NA 

()* brackets here denote that the features inside cannot be confidently ranked. NA means not available. 

3.1.6.2 Anderson’s iris data 
The filter method M-I was first applied for this problem. The number of divisions in the domain for 

each feature was nbx=20. The selected features were {4,3} in agreement with the conclusions of Li et 

al. (2002). Methods M-II through M-IV produced exactly the same results, which is even better 

performance than if all features were used. The Garson method identified feature 3 as most important 

and feature 1 as the least relevant, while the importance of features 2 and 4 remained undetermined 

due to their inconclusive saliency values. For 4 to 10 hidden neurons, the generalization accuracy rate 

of the network was almost constant and approached 95%, denoting well-trained networks. 
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Table 3.7 Methods M-I to M-V compared on the iris data classification problem 

Method # of var. Order AR 
(1-NN) (%) 

None (all available 
features considered) 

4 NA 93.52 

M-I: Forward selection 
with I(Y|Xs). (nbx=20) 

2 4 3 (1 2) 94.12 

M-II: Forward selection 
with AR(1-NN). 

2 4 3 (1 2) 94.12 

M-III: (l,r) search with 
AR(1-NN). 

2 4 3 (1 2) 94.12 

M-IV: Forward with 
I(Y|Xs) continued with (l,r) 

search with AR(1-NN). 

2 4 3 (1 2) 94.12 

M-V: Garson’s saliency 
values through ANN 

NA 3  (4 2) 1 NA 

()* brackets here denote that the features inside cannot be confidently ranked with the respective feature selection 
method. NA means not available.   

 

3.1.6.3 Three-class flow regimes classification in trickle beds 
For this problem, we wanted to determine which variables among those listed in Table 3.4 were most 

likely to be predictive for the flow regimes: LIR, TR, and HIR. The summary of the analysis of the 

different methods is given in Table 3.8. For methods M-I to M-IV, the solution subset Xs consisted of 

all variables added (and not removed) until the epoch when the relevance criterion reached a maximum 

value. 

Method M-III (Figure 3.6) yielded better results than did method M-II, since (l,r) search allows 

backtracking and removes variable 7 at the end of step 4 (epoch 12). This variable, bed specific area, 

aT, was removed, even if shown to be the best at epoch 2 in conjunction with variable 1 (liquid 

velocity, uL). As this problem involved the largest number available features, p, it was a perfect 

opportunity to show the usefulness of method M-IV. This method starts with the first 6 most relevant 

features found with M-I and continues to grow and prune this pre-selection (Figure 3.7). As seen in 

Figure 3.7, the (l,r) search starting with initial pre-selection {5,1,2,11,14,4} continued to improve the J 

value. 
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The Garson’s method only provided meaningful ranking for the first 3 variables. It can underline only 

that the liquid velocity (feature 1), the gas density (feature 13), and the gas velocity (feature 2) are 

important; the other features could not be confidently ranked. 

The subset of variables (identified by methods M-III and M-IV): Xs = {uL,  µG, uG,  σL, Dc,  φ, µL,  ρG, 

 ε, ρL, Foam.} was most likely sufficient for predicting the flow regime classes. 

There are several tools presented in recent literature that allow identification of flow regimes in the 

form of flow charts, empirical or fully conceptual correlations, for the liquid velocity (uL,tr) that 

demarcates the transition between the LIR and HIR (Dudukovic et al., 2002). Most of these methods, 

which generally lack robustness when tested thoroughly (Larachi et al., 1999), use only a few variables 

(features) to indicate the transition between LIR and HIR. Flow charts like those of Turpin et al. 

(1967) or Sato et al. (1973) use only the gas and liquid mass flow rates (involving only the variables 

uL, uG, ρL, ρG), being thus restrictive and applying mainly to water-like and air-like fluids.  

Table 3.8 Methods M-I to M-V compared on flow regime classification 

Method #of var. Order AR 
(1-NN)(%) 

None (all available 
features considered) 

14 NA 91.86 

M-I: Forward selection 
with I(Y|Xs). (nbx=50) 

8 5 1 2 11 14 4 12 13 (3 6 7 8 9 10) 92.79 

M-II: Forward selection 
with AR(1-NN). 

11 1 7 14 2 12 11 9 4 13 10 3 (5 6 8) 93.04 

M-III: (l,r) search with 
AR(1-NN). 

11 1 14 2 12 4 9 11 13 5 10 3 (6 7 8) 93.18 

M-IV: Forward with 
I(Y|Xs) continued with 
(l,r) search with AR(1-

NN). 

11 1 14 2 12 4 9 11 13 5 10 3 (6 7 8) 93.18 

M-V: Garson’s saliency 
values through ANN 

NA 1 13 2 (4 5 6 7 8 9 10 11 12 3) 
 

NA 

()* brackets here denote that the features inside cannot be confidently ranked. NA means not available.  Meaning of the 
variables: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 
uL uG Foam Dc ε aG aT dp φ ρL µL σL ρG µG 
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Figure 3.6 (l,r) search with accuracy rate as relevance criterion (M-III). Only the first 6 steps are 
shown for clarity. Dotted circle shows the 4th step. “+” / ”-“ means that the corresponding feature was 
added to /deleted from the current subset. 

 

More recent correlations (Dudukovikc and Mills, 1986; Wang et al., 1994) have tried to predict uL,tr by 

taking into account also σL, µL and eventually ε. A comprehensive correlation for the liquid transition 

velocity was also recently proposed (Larachi et al., 1999) by taking into consideration the variables ρL, 

µL, σL, uG, ρG, uL, µG, ε and dp. 

Hence, these variables deemed in the literature to be important in flow regime identification were 

included directly or indirectly within the subset using the present selection feature algorithms. Note 

that the particle diameter was somehow involved through embedding in the sphericity and the bed 

porosity defined in ( ) TP ad ε−= 16 and ( )
T

P

P a
N

N
×







 −
=

3
2

16
π

επφ  (Np: number of particles per unit bed 

volume). 
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Figure 3.7 Method M-IV applied on flow regime problem. The method starts with the first six 
variables found with M-I and continues until no more increase in the accuracy rate of a 1-NN classifier 
is observed. “+” / ”-“ means that the corresponding feature was added to /deleted from the current 
subset. 

 

3.1.6.4 Two-class bed expansion/contraction in three phase fluidized beds 
In this problem, there were 10 features that might indicate bed contraction/expansion upon 

introduction of a tiny gas flow rate in the initially liquid-fluidized bed. Using all the features, we 

obtained AR(1-NN) = 96.62 %. The solution provided by methods M-I to M-IV was Xs={5, 4, 1, 7, 9}. 

Using only these 5 variables, the accuracy rate decreased slightly to AR(1-NN)=96.26%. The first 

method, M-I, based on mutual information criterion, induced the following order of preference:  

5 4 1 7 9 
ρs σL uL ut H0 

 

while methods  M-II to M-IV suggested the following order: 
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7 4 1 9 5 
ut σL uL H0 ρs 

 

Figure 3.8 and Figure 3.9 show the difference between the importance of the same selected variables 

by the two different relevance criteria: respectively, mutual information (M-I) and accuracy of a 

nearest neighbor classifier (method M-II).  

 

Figure 3.8 Sequential forward selection with mutual information as relevance criterion (M-I) on the 
bed expansion/contraction problem. “+” means that the corresponding feature was added to the current 
subset. 

 

As the same search technique (sequential forward selection) was used in both cases, the difference lay 

only in the relevance criterion. Mutual information (M-I) gave equal importance to the solid density, 

liquid surface tension, particles terminal velocity, and liquid superficial velocity, and less importance 

to the bed height at rest. Method M-II revealed that the terminal velocity is more important than all 

other features in the selection, and the other features make comparable contributions to class 

predictability. The method M-IV did not provide a sound ranking of the features, as the saliency values 

were not significantly different for the 10 variables. 
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Figure 3.9 Sequential forward selection with accuracy rate as relevance criterion (M-II) on the bed 
expansion/contraction problem. “+” means that the corresponding feature was added to the current 
subset. 

 

The elite subset of variables (identified by methods MI to M-IV): Xs = {ut, σL, uL, H0, ρs} are needed 

to accurately predict the initial behavior of the fluidized bed. This conclusion (as in the case of trickle 

bed flow regimes) is based on the available data and is supported by the following physical grounds. 

For a liquid fluidized bed containing small solid particles, there should be an increase in the bed 

porosity sεε −= 1  when superimposing a gas stream to a liquid-fluidized bed (εs = solid hold-up). In 

some instances, however, the bed may initially contract until it reaches a critical point, beyond which 

the bed height will resume its increase with an increase in gas flow rate. This happens because bubbles 

entrain the liquid and particles into their wakes, thereby reducing the amount of liquid in the bed used 

to fluidize the remaining particles (Jiang et al., 1997). 

Bed contraction/expansion phenomena are conceptualized by the generalized wake model (Bathia and 

Epstein, 1974; Jean and Fan, 1986) which suggests that the liquid velocity, the particle terminal 

velocity (both present in Xs) and the k and x bubble wake parameters control the initial bed state. The 

bubble wake parameters are influenced (Larachi et al., 2001), among other parameters, by σL and ρs, 
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both belonging to Xs. Jiang et al. 1997 also acknowledged that bed contraction is closely linked to the 

presence of large bubbles, whose number is somehow affected by the liquid superficial tension, σL. 

The Soung (1978) empirical correlation for initial bed state stated that the importance of ut is directly 

correlated to uL/uG ratios. Feature selection algorithms reveal that bed height at rest (H0) has an 

influence which is relatively marginal with respect to the other variables in set Xs (see Figure 3.8 and 

Figure 3.9). This is supported by literature studies that have also shown that initial bed heights could 

affect bed expansion or contraction. 

 

3.1.7. Conclusions 
In the first part of Chapter 3, we presented different feature selection algorithms, which helped identify 

the most relevant variables in two multiphase reactors classification problems. Relevance here was 

assessed in terms of: 

i) mutual information measuring the dependence among the features and the class variable, 

ii) accuracy rate of a one-nearest neighbor classifier known to work well on most problems. 

The first criterion belonged to the class of filters and was a statistical measure of the filtering 

capabilities of variables. The second belonged to the wrappers category and used a particular classifier 

(here 1-NN) to test relevance. A third relevance criterion, based on the Garson’s saliency index, 

interpreted the size of the weights of trained neural network classifiers, which we extended to work 

with multiple outputs neural networks. The selection algorithms targeting maximization of the 

relevance criteria (mutual information and accuracy rate) in charge of the combinatorial search were 

sequential forward selection and the (l,r) search method.  

We devised here a hybrid filter-wrapper approach, which in the first step used the mutual information 

criterion and SFS to obtain a set of features describing the class to be predicted. This set was further 

updated using the (l,r) search to maximize the performance rate of a 1-NN classifier. This last method 

was faster than a mere (l,r) search starting with an empty set and provided the same results on the test 

problems. 
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The different selection schemes were applied to four problems. The first two problems were 

benchmarks (synthetic and real) to test whether the schemes captured the proper solutions. The last 

two problems were borrowed from the area of multiphase reactors:  i) flow regime identification in 

trickle beds and ii) bed initial contraction/expansion in three-phase fluidized bed reactors. For both of 

these problems, the ULaval multiphase reactors databases were used to identify the most relevant 

variables (features) for classification. The feature reduction induced, in all cases, an increase in 

classification performance, except for the bed expansion/contraction, where reducing the number of 

variables from 10 to 5 slightly decreased the accuracy. In the case of flow regime classification, the 

following variables were found to be important in trickle beds: uL, µG, uG, σL, Dc, φ, µL, ρG, ε, ρL, 

Foam. For bed expansion/contraction in three-phase fluidized beds, the most relevant features were ρs, 

σL, uL, ut and H0. The next part of Chapter 3 addresses the classification issue using as discriminant 

features those that appeared relevant in this first step. 
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3.2 Data classification: application to flow regime classification in trickle 
beds 

 

3.2.1 Bibliographical review and problematic 
In this second half of Chapter Three, the focus is on methods used to perform classification when 

pertinent discriminant features are available. The case study detailed herein is the flow regime 

classification in trickle bed reactors (TBR).  We wanted to obtain a model able to assign the correct 

flow regime to any particular realization of the input feature vector.  

Many gas-liquid-solid (G-L-S) catalytic reactions and hydro-treating processes of petroleum 

refining are conducted in trickle bed reactors (Dudukovic et al., 2002; Holub, 1993; Ramachandran 

and Chaudhari, 1983). Their friendly design, which consists of a porous static granular bed traversed 

concurrently downward by gas and liquid streams, hides a monumental complexity associated with the 

randomness and chaos of fluid and solid partitions and mutual interactions. The mathematical 

rationalization of the flow patterns arising from this complexity has long been fueled with intuitive 

empirical approaches of limited success, as witnessed by the rapidly increasing number of published 

correlations (for an exhaustive survey, see Al-Dahhan et al., 1997; Larachi et al., 1999; Dudukovic et 

al., 2002). 

The various flow regimes that manifest in trickle beds range from gas-continuous to liquid-continuous 

patterns, e.g., trickle, pulse, spray, bubbly, dispersed bubble, foaming, foaming pulsing flow regimes, 

and so forth, depending on operating conditions and fluid and packing characteristics. A useful 

simplification presented in the literature consists in categorizing the flow patterns as low interaction 

regime (LIR), high interaction regime (HIR), and their neighboring transition regime (TR) 

(Charpentier and Favier, 1975). However, since the changeover from trickle flow to pulse flow 

regimes has been the most widely investigated over the past several decades, LIR and HIR are often 

confounded with trickle flow and pulse flow regimes, respectively. 

Graphical representation of the data in the form of flow regime maps (Charpentier and Favier, 1975; 

Gianetto et al., 1978; Fukushima and Kusaka, 1978; Holub et al., 1993; Larachi et al., 1993) has its 
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own pragmatic merits, considering the lack of generally accepted theories regarding the mechanisms at 

the origin of the various transitions. Nonetheless, compression into two or three flow chart coordinates 

of the relatively high number of variables having an impact on flow regime transition is not always the 

best choice (Larachi et al., 1999). Using a comprehensive knowledge-referenced database, Larachi et 

al. (1999) developed a neural-network based correlation for the superficial liquid velocity at transition 

uL,tr between trickle flow (LIR) and pulse flow (HIR) regimes. This correlation, like many other 

empirical ones, views the transition (TR) as a sharp separation between LIR and HIR, when in reality 

it should represent a progressive transition region in-between. 

Recently, Tarca et al. (2003c) implemented a series of feature selection algorithms on the same 

database to determine which among the several process variables were most relevant in a subsequent 

flow pattern recognition classifier predicting flow regime class. The relevance measures considered 

were the mutual information (Batitti, 1994) and the accuracy rate of a nearest neighbor classifier. 

Following this analysis, the variables predicting the flow regime were the superficial liquid velocity 

(uL), gas viscosity (µG), superficial gas velocity (uG), surface tension (σL), column diameter (Dc), 

sphericity factor (φ), liquid viscosity (µL), gas density (ρG), bed porosity (ε), liquid density (ρL), and 

foam index (Foam). Particle size did not appear in the optimal features set. The most informative 

features set established, the next step was to design the data-driven inference engine (classifier). 

The present study developed appropriate classification models that would predict the flow regime 

class using the above-mentioned features. Instead of approximating the transition superficial liquid 

velocity, uL,tr, as done in the past, we attempted to model the probability that a given system state is 

affixed to one of the three LIR, TR, or HIR classes. This allowed us to view class TR as a gradual in-

between band demarcating the transition between LIR and HIR classes, rather than as a sharp change. 

Flow regime classification can thus be approached like in statistical pattern recognition field. This is 

done by considering classes LIR, TR, and HIR, and by searching for discriminant functions predicting 

the class function of the system particularities and operating conditions. 

There are numerous statistical and neural network paradigms used to perform supervised classification, 

using as a basis a data set of examples with known flow regime membership. Those tested in this work 

included: Gaussian (quadratic discrimination rule), linear (normal based), nearest mean class, nearest 

neighbor, k-nearest neighbor, binary decision tree, radial basis functions, and multilayer perceptron 

neural networks. Multilayer perceptrons are by far the most popular neural network classifiers, as they 



125 
 
generally exhibit superior performance with respect to other classification algorithms (Lowe and 

Webb, 1990). However, using neural networks in the classical way can be unsuitable. Therefore, 

specificities of flow regime classification problems must be dealt with as: 

• The misclassification cost inequality for non-adjacent classes. Predicting a system in LIR, 

while it actually belongs to HIR, is a much more serious misclassification than predicting it in 

class TR. 

• The adherence of the model to some a priori knowledge in the form of monotonicity 

constraints, assuring shift from one class to another. These qualitative rules guarantee model 

phenomenological consistency (Tarca et al., 2003a). 

This contribution is organized as follows. First, the knowledge-referenced database is briefly 

described. It is followed by an introduction to classification, the common classifiers, and the measures 

for their performance assessment. A comparison is then made between these classifiers, using as 

criteria their cross-validated error, a loss measure pertinent to flow regimes classification, complexity, 

and interpretability. Different possibilities of incorporating prior knowledge as class connectivity and 

different misclassification costs are presented. Finally, an improved neural network model is devised 

for flow regime classification in trickle beds, and its capabilities and limitations are discussed. 

3.2.2 Description of flow regime database   
The comprehensive knowledge-referenced database of flow regime observations (Larachi et al., 1999) 

was considered. A database query was used to retrieve only the sources of records where the authors 

observed all three regime classes with no missing values for uL, µG, uG, σL, Dc, φ, µL, ρG, ε, ρL, Foam 

within each class. The resulting database contained 5,061 points distributing as: 1,937 LIR, 958 TR, 

and 2,166 HIR. Note the uneven distribution of instances among classes with TR class having ca. 

twice fewer records. Data normalization was performed as follows: 
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In which x’
j is the value of feature j in the feature vector {uL, µG, uG, σL, Dc, φ, µL, ρG, ε, ρL} in the 

original measurement units, and r is the index of the record. The ranges of the feature values in the 

original measurement units are summarized in Table 3.9. 

 

Table 3.9 Ranges of input variables in the flow regime classification  
Variable Symbol Max Min 

Liquid superficial velocity (m/s) uL 1.74E-01 9.03E-06 
Gas viscosity (Pa.s) µG 1.97E-05 1.45E-05 

Gas superficial velocity (m/s) uG 4.08E+00 4.98E-04 
Surface tension (N/m) σL 7.62E-02 1.90E-02 
Column diameter (m) Dc 5.10E-01 2.30E-02 

Sphericity (-) φ 1.00E+00 3.20E-01 
Liquid viscosity (Pa.s) µL 6.63E-02 3.10E-04 

Gas density (kg/m3) ρG 1.16E+02 1.60E-01 
Bed porosity (-) ε 7.50E-01 2.63E-01 

Liquid density (kg/m3) ρL 1.18E+03 6.50E+02 
Foaming property 

(0=coleasing; 1=foaming) FOAM 1 0 
 

 

3.2.3 Supervised classification, classifiers, and performance evaluation 

3.2.3.1 Supervised classification 
Let us consider the classification issue. Suppose there are n objects (or patterns) xr, r = 1…n, 

, each with a class label yT
prjrrrr xxxx ),...,...,( ,,2,1,=x i, i = 1, 2…C, where C is the number of classes 

(C=3). These samples constitute the design set ( ){ }nryD rir ...1,)(, == xx  to be used for building a 

classifier (decision rule or inference engine) able to generalize for any new observation , i.e., 

for any value each of the p features will take in the interval [0,1].  

p]1,0[∈x
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Consider now the C classes , (LIR, TR, HIR)1...Ci ,i =y  with a priori probabilities (the probabilities 

of each class occurring) p(yi) assumed known. In order to minimize the probability of making an error 

in the classifier operation, and with no information other than the prior probabilities p(yi), we assign an 

object to class yi if  

iypyp ki ≠…=> k ; C2 1, k ,)()(          (3.14) 

which classifies all objects as belonging to the majority class. (For classes with equal probabilities, 

patterns are assigned arbitrarily among those classes). Knowing the values of the observation vector x 

and its associated conditional probability, x must be assigned to class yi if the probability of class yi, 

given the observation x, i.e., p(yi│x), is the largest over all classes. That is, assign x to class yi if: 

iypyp ki ≠…=> k ; C2 1, k ,)|()|( xx         (3.15) 

Using the Bayes’ rule, such a posteriori probabilities can be expressed in terms of the a priori 

probabilities  and the class-conditional density functions : 

)|( xiyp

)( iyp )|( iyp x

)(
)()|()|(

x
xx

p
ypypyp ii

i
⋅

=            (3.16) 

Eq. (3.15) may therefore be rewritten as: 

 assign x to class yi if: 

iypypypyp kkii ≠…=⋅>⋅ k ; C2 1, k ,)()|()()|( xx        (3.17) 

which is known as the Bayes’ rule for minimum error.  

In practice, one may set a priori probabilities as equal (p(yi)=1/C) when a new sample point x drawn 

from the samples space pR  is expected to fall in either class yi with equal probability. Alternatively, 

class distribution in the design set D can be considered representative of the sample space. In this case, 

the priors were computed simply as p(yi)=ni/n, where ni was the number of class i occurrences in the 

design set D. 
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Assuming that  is known, we need to estimate only the class conditional density , as 

 is independent of the class. 

)( iyp )|( iyp x

)(xp

The statistical pattern recognition considers two basic approaches to density estimation: parametric and 

nonparametric. In the parametric approach, we assume that  is of a known form, but has an 

unknown set of parameters. In the nonparametric approach, the density is estimated without making 

any functional assumption. In both cases, the design set D of observations with known class is used to 

approximate the class-conditional probabilities. 

)|( iyp x

 

3.2.3.2 Classifiers 
In multi-class classification problems like flow regime assignment in trickle beds, a classifier may be 

viewed as C discriminant functions gi(x) such that: 

iygg iki ≠…=∈⇒> k ; C2 1, k ,)()( xxx        (3.18) 

meaning that a pattern is assigned to the class having the largest discriminant function which, 

according to the Bayes decision rule Eq. (3.17), is written as: 

)()|()( iii ypypg ⋅= xx            (3.19) 

Literature is replete with discriminant functions varying in complexity from linear (in which g is a 

linear combination of xj) to multiparameter nonlinear functions such as multilayer perceptron neural 

networks. Below is a brief description of some classifiers tested in this work, with some details drawn 

from Webb (2002). 

 

A) Gaussian classifier (quadratic discrimination rule) 

This is a classifier based on the normality assumption of the class-conditional probability function, i.e.: 
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      (3.20) 
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where µi and are respectively the center and the covariance matrix of the normal distributions and p 

the dimensionality of the input vector x. The normal based quadratic discriminant function  

(McLachlan, 1992) may be obtained from taking log value of Eq. (3.19) r.h.s. with , as 

indicated in (3.20), and removing the terms which remain constant for all classes: 

iΣ

)|( iyp x

( ) )(ˆ)(
2
1ˆlog

2
1))(log()( 1

ii
T

iiii ypg mxΣmxΣx −−−−= −       (3.21) 

In Eq. (3.20), the true mean µi and covariance matrix were replaced by their maximum likelihood 

estimates  

iΣ

∑
=

=
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          (3.23) 

B) Normal based linear  

A simplification of the gaussian classifier assumes that the class covariance matrices are all the 

same, in which case the discriminant functions g

iΣ

i become: 

iw
T

iw
T

iii ypg mSxmSmx 11

2
1))(log()( −− +−=         (3.24) 

The unbiased estimate of the pooled within-group sample covariance matrix Sw is given by 

i

C

i

i
w n
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n ΣS ˆ
1

∑
=−

=             (3.25) 

O’Neill (1992) showed that the linear discriminant rule (Eq. (3.24)) is quite distinct from the equal 

covariances matrix assumptions and may perform better than the optimum quadratic discriminant rule 
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for normally distributed classes when the true covariance matrices are unknown and the sample sizes 

are small. 

C) Nearest class mean  
This is a quite simple classification approach. The mean vectors of samples in each class mi are 

computed with Eq. (3.22). Any new pattern x is assigned to the class whose mean, evaluated with the 

Euclidian metric distance, is the nearest. The squared Euclidian distance is 

i
T

ii
TT

i mmmxxxmx +−=− 2|| 2           (3.26) 

The discrimination function implemented by the nearest mean class is:  

i
T

ii wg 0)( += xwx             (3.27) 

with and ii mw = 2
0 ||

2
1

iiw m−=  

The maximum gi will then correspond to the minimum distance between x and the class mean. 

 

D) Nearest Neighbor   

The discriminant function implemented by the nearest neighbor principle is very similar to that of the 

nearest class mean classifier. In the nearest neighbor principle, however, distances from the point x are 

computed with respect to all patterns in all classes, and the class of the nearest neighbor is assigned to 

x.  

Consider ni patterns in class yi, , i = 1, 2…C. The nearest neighbor discriminant function for 

class y

in
ii pp ,...1

i is 

)(max)(
,...,1

xx k
inki gg

i=
=             (3.28) 

with  
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ig pppxx

2
1)( −= , k = 1, 2…ni ; i = 1, 2…C        (3.29) 

A pattern x is assigned to the class for which is largest, that is, to the class of the nearest 

prototype vector. This discriminant function generates a piecewise decision boundary.  

)(xig

 

E) k-Nearest-Neighbor   

This is a natural extension of the nearest neighbor rule. Once the subsidiary discriminant functions 

gi
k(x) are computed as described earlier, they are sorted decreasingly to correspond to an increasing 

order of distances from x to all the patterns. Suppose that in the first k samples, there are km in class ym, 

. The k-nearest neighbor rule reads: assign x to class ykk
C

m m =∑ =1 m if km ≥ ki, i=1,…,C. 

For situations where two or more classes receive an equal number of votes, we break the tie by 

assigning x to the class, out of the classes with tying values of ki, that has the nearest mean vector 

(calculated over the ki samples) to x. 

 

F) Multilayer perceptron neural network   

The multilayer perceptron (MLP) is a feed forward neural network that has recently been the subject of 

much discussion. Used for function approximation (in regression context) and classification, MLP is 

robust compared with other available statistical tools. First introduced by Rumelhart et al. (1986), an 

MLP used in a C –class classification problem can be seen as a set of C discriminant functions gi.  
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which is the logistic sigmoid. 
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The MLP computing the output i is a single hidden layer, fully connected feed-forward neural 

network. (See Eq. (3.30)).  There are J neurons (nonlinear function) denoted with jφ . First, the input 

vector x is projected onto each of the J directions described by the vectors αj; transforming the 

projected data (offset by the bias jp ,1+α ) by the nonlinear functions )(zjφ ; then, a linear combination is 

done using the weights wi. If σ is taken as the identity function zz =)(σ (obtaining thus a MLP with 

linear output units), this is the final result. If σ  is taken as the logistic sigmoid Eq. (3.31) (obtaining 

thus a MLP with nonlinear output units), a second nonlinear transformation is done. We considered the 

latter option in this study. 

The free parameters (weights) of the discriminant functions αk,j , k=1,…, p+1, j=1,…J; and wj,i 

j=1,…J+1, I=1,…C were estimated using a training procedure. Classically, in one-of-C target coding, 

the error of the neural network (constituted by the C discriminant functions gi(x) considered all 

together) is computed as 

(
2

1 1
, )(∑∑

= =

−=
n

r

C

i
riir xgtE )            (3.32) 

where tr,i=1 if xr belongs to the class i , and tr,i=0 otherwise. 

The training algorithm we used to estimate the weights of the neural network was the Levenberg-

Marquardt algorithm implemented in Matlab® Neural Networks Toolbox.  

 

G) Radial basis functions   

Radial basis functions were originally proposed for function approximation. They were first used for 

discrimination by Broomhead and Lowe (1988). They are very closely related to both kernel methods 

for density estimation and regression and to normal mixture models. Mathematically they can be 

described as a linear combination of radially symmetric nonlinear basis functions. They transform a 

pattern pR∈x to a C-dimensional output space:  
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The transfer functions here are gaussian, i.e.,  

)exp()( 2zzj −=φ             (3.  1) 

The weights wi are determined with a Least Squares method. The centers µi are selected from the 

training samples, and the spread of basis functions is set by trial and error. We used the orthogonal 

least squares algorithm of Chen et al. (1991) implemented in Matlab® Neural Networks Toolbox.  

 

H) Binary classification trees   

A special type of classifier is the decision tree, which is trained by an iterative selection of individual 

features that are the most salient at each node in the tree. The criteria for feature selection and tree 

generation include node purity or Fisher’s criterion.  The most commonly used decision tree classifiers 

are binary and use a single feature at each node, resulting in decision boundaries that are parallel to the 

feature axes. They are, therefore, intrinsically suboptimal, but are able to interpret the decision rule in 

terms of individual features.  

There are several heuristic methods for constructing decision-tree classifiers. They are usually 

constructed top-down, beginning at the root node and successively partitioning the feature space. The 

construction involves three main steps: 

1. Selecting a splitting rule for each internal node, i.e., determining the feature together with a 

threshold that will be used to partition the data set at each node.  

2. Determining which nodes are terminal nodes. This means that, for each node, we must decide 

whether to continue splitting or to make the node terminal and assign it a class label. 

3. Assigning class labels to terminal nodes. This is straightforward; labels can be assigned by 

minimizing the estimated misclassification rate.  The binary tree we used is based on the Quinlan’s C 

4.5 algorithm (Quinlan, 1993). 
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3.2.3.3 Performance evaluation 

3.2.3.3.1 Misclassification rate  
One method used to estimate the misclassification rate involves computing the classifier confusion 

matrix on several v-fold cross-validation sets (Kohavi, 1995 for cross-validation issues). Consider the 

design set D = {(xr,yi(xr)), r = 1,..,n} for a given classification problem. Let set D be partitioned in v 

disjoint subsets (or folds) Ak such that Ak ⊂ D, ∀ k=1,.., v and Ai ∩ Aj = {∅} ∀ i≠j. In each fold Ak the 

percentage of samples belonging to class yi, i=1,…,C is about the same as in set D. 

Let η(z;D–Ak) denote the class label predicted by the classifier trained on the D–Ak data set when input 

z, with true class y(z), is presented. The loss function usually adopted in classification error estimation 

is: 
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The misclassification rate may be defined as: 
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where represents the number of samples in the set A'
kn k and n is the number of samples in the whole 

set D. Thus, the misclassification rate expresses the fraction of points in D that are misclassified. 

The meaning of the misclassifications partition can be clarified by using the global confusion matrix, 

which is obtained by summing up the v confusion matrices obtained by testing the classifiers on the Ak 

sets while being trained on the complementary D-Ak sets. 

The size of the confusion matrix CM is (C×C). Each of its cells indicates how many samples are 

assigned to class yi (i is the column index) when the actual (true) class index is yj (j is the row index): 
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Therefore, the misclassification rate Err is the sum of the off-diagonal elements in the confusion 

matrix divided by the sum of all elements in the matrix. In the example given in Eq. (3.37), the design 

set has 300 data points; 55 of those were misclassified. The Err is then 55/300.  

Note that the classifier error estimate Err obtained using the above procedure yields an upper bound 

limit of the error rate, since at each fold a data fraction 1/v is not used in training. However, if the 

classifier is trained on all data, the obtained Err value would be lower. 

3.2.3.3.2 Loss value using class connectivity information 
Let us define a flow regime classification loss function L by proposing a heuristic cost matrix for 

misclassification. A reasonable cost matrix could be: 
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Each element in this matrix denotes the cost assigned to predicting a pattern in class j (given by 

column index) while the true class is i (indicated by row index). Misclassifying a point increases the 

cost by 1, whereas confusing non-adjacent HIR and LIR classes is penalized trice. 

Finally, the loss L is obtained through element-wise multiplication of the confusion matrix with the 

cost matrix, taking the sum over all elements: 
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3.2.4 Results 

3.2.4.1 Results with common classifiers 
The performance measures, i.e., misclassification rate (Err) and loss value L for the classifiers 

presented in §3.2 were tested on the 3-class flow regime database (LIR, TR, HIR, 5 061 records). The 

results on flow regime classification with the various statistical and neural network classifiers are 

summarized in Table 3.10. For each classifier, the number of parameters, the misclassification rate, the 

loss, and the confusion matrix are given. 

The smallest prediction error was achieved with the nearest neighbor classifier, which also gave the 

minimal loss. However, this classifier needed all the data set (features plus class membership) as 

parameters in order to make flow regime predictions. The second best classifier was the MLP neural 

network, which exhibited a reasonably low number of free parameters: 153 instead of 60 732 for the 

nearest neighbor classifier. The error of the Gaussian classifier was about twice as high as the MLP, 

suggesting that the sample distributions in each of the three classes deviated strongly from the 

normality assumption used in the quadratic discrimination rule. Also, deviation from normality was 

confirmed by the poor performance of the nearest class mean classifier, which could have yielded 

better predictions, if the data within each class had been clustered around their class means. 

Though the normal-based linear classifier lead to poorer classification than the Gaussian quadratic 

classifier, it did, however, largely prevent confounding the HIR with LIR and vice-versa, as revealed 

by the lower loss value. The radial basis functions performed rather poorly compared with the MLP 

neural network, despite the fact that RBFs use twice as many free parameters. 

The binary classification tree, which is the most interpretable classifier among all listed in Table 3.10, 

was too imprecise to be considered further. 

The MLP neural network exhibited the best trade-off between accuracy (ranked third for 

misclassification rate) and complexity (ranked third with lowest number of parameters) as shown in 

Table 3.10. It will be presented in the next section, which focuses on alternative methods of 

embedding prior knowledge in this type of classifier. 
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Table 3.10 Results on flow regime classification problem with statistical and neural network classifiers  

Classifier 
# Parameters Misclassifi -

cation rate 
(%) 

Loss Confusion Matrix 

A) Gaussian (quadratic 
discriminant) 

Cyp i /1)( = , i =1…C 

396)( =+⋅⋅ pppC  23.3 1899 

















1668259239
84655219
1212571559

 
B) Normal based linear 

discriminant 
154=⋅+⋅ pppC  28.0 1671 

















155057343
10777972
835411313

 
C) Nearest class mean 33=⋅ pC  60.1 4431 

















1098102741
20168077
6531044240

 
D) Nearest Neighbor 60732)1( =+⋅ pn  9.0 840 

















20175792
9080761

101531783

 
E) k- Nearest Neighbor  

(k=5) 
607331)1( =++⋅ pn

 
10.9 1011 

















201146109
13573786
120571760

 
F) Multilayer perceptron 
J=10 hidden neurons, 200 
ite. (LM) (Standard MLP). 

CJJp ⋅++⋅+ )1()1(
153=  

11.5 1005 

















197674116
114725118
96631778

 
G) Radial basis functions 

J=20 hidden neurons 

1)1( +⋅++⋅ CJJp
284=  

21.5 1854 

















197326167
354353251
216741760

 
H) Binary classification 

tree 

Nodes=20, Leafs=11 

++⋅ LeafsNodes3  
=−⋅+ )(3 LeafsNodes

98=  
 

29.8 2842 

















19735188
479141338
479191439
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3.2.4.2 Knowledge augmented MLP classifiers 
There are at least two types of qualitative prior information available about the flow regime 

classification that could improve MLP performances. 

MLP-A) Using costs directly in MLP training  

Multi-class problems often use a 1-of C coding scheme for MLP training. Unfortunately, this does not 

take into account the different costs associated with misclassifications.  

A possible way to use the cost information without altering the learning power of MLP training 

algorithms is to use the rows of the Cost matrix as target vectors for the neural network (Lowe and 

Webb, 1990).   

The cost matrix (Eq. (3.37)) normalized by division with its maximum element (in order to obtain 

values in the interval [0 1]) was therefore used for network training: 

 
Class Classic target vectors Cost coded target vectors 

1 [ 1 0 1] [ 0  1/3   1] 
2 [ 0 1 0] [1/3  0  1/3] 
3 [0 0 1] [1  1/3   0] 

 
The class to which a pattern is assigned by this trained network corresponds to the coded target vector 

with respect to which the networks’ response vector is closest in terms of the Euclidian distance. The 

confusion matrix, the loss value, and misclassification rates obtained by this neural network are given 

in Table 3.11.  

 
MLP-B) Continuous output MLP classifier  

Because the classes are somehow ordered-- i.e., LIR, then TR, followed by HIR-- we may change the 

classification into a regression. For this, a single output MLP is used. As the output is endowed with 

sigmoid transfer function, the following coding is used: 0 for LIR, 0.5 for TR, and 1 for HIR. 

Once trained, the network will produce an output for each new input point x. This will be assigned 

to class LIR if

)(ˆ xy

0.25)(ˆ0 <≤ xy ,  to TR if 75.025.0 )(ˆ <≤ xy , or to HIR if 0 . 1)(ˆ75. <≤ xy
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The number of hidden nodes chosen by trial and error was 12, which gave us 157 parameters. This 

number was almost the same as in the standard MLP, (see the Table 3.10) as well as in MLP-A 

discussed previously. The performance in terms of loss is presented in Table 3.11.  These results are 

far better than those obtained with MLP-A. 

MLP-C) Continuous output MLP classifier with monotonicity constraints 

Another aspect of a priori class connectivity knowledge on flow regime classification concerns the 

shift of the class memberships in a hierarchical manner subject to monotonic variations in some of the 

process variables. As an example, from this prior knowledge, the influence of liquid and gas 

superficial velocities and gas density on class connectivity is given as: 

uL ↑: class moves in the order LIR → TR → HIR 

uG ↑: class moves in the order LIR → TR → HIR 

ρG ↑: class moves in the order HIR→ TR→ LIR 

As the classification problem turns into a regression one, these rules may be also viewed as: 

0)(ˆ
≥

∂

Lu
y x              (3.40) 

0)(ˆ
≥

∂

Gu
y x              (3.41) 

0)(ˆ
≤

∂

G

y
ρ

x              (3.42) 

The same network configuration as in MLP-B is then trained in such a way to guarantee monotonicity 

behaviour. The training in our study was done as described in a previous work (Tarca et al., 2004a) 

using a genetic algorithm-genetic hill climber optimizer. The model provided by this methodology was 

fine-tuned using a gradient-based constrained technique implemented in Matlab ®.  Both optimization 

schemes were performing the following constrained minimization problem: 
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∑
=

−
TN

i
iiw

yy
1

2)(min )             (3.43) 

subject to:  

0, ≥⋅ jkj ww , ∀  and k={1,3}        (3.44) Jjj ≤≤1,

0, ≤⋅ jkj ww , ∀  and k={8}       (3.45) Jjj ≤≤1,

In Eq. (3.43) yi represents the coded desired output (y=0 for LIR, y=0.5 for TR, and y=1 for HIR) 

while  is the value predicted by the model for the training sample xiŷ i. (See Table 3.12 for the full set 

of equations). 

If all the weights  between the input k and the hidden node j have the same sign as the weights  

from the hidden node j to the output node, then the neural network function will be monotonically 

increasing with respect to the input k in the entire definition domain. Conversely, if the signs are all 

opposite, then decreasing monotonicity will be achieved. The inputs {1,3} referred to in eq. (3.44) 

correspond to u

jkw , jw

ŷ

L and uG, while {8} correspond to ρG. A five-fold cross-validation was carried out to 

estimate an upper bound limit of the misclassification rate for all classifiers. The 16.2% 

misclassification rate for MLP-C was slightly higher than for MLP-B (Table 3.11) which is natural as 

long as MLP-C was trained respecting the monotonicity constraints. Using all the training data (5061) 

for building an MLP-C classification model yielded, as expected, a slightly lower misclassification rate 

of 15.5% with respect to the cross-validation procedure. Moreover, this MLP-C model required only 

118 parameters, as opposed to. 157 with MLP-B. Table 3.12 gives the full set of equations for the 

MLP-C model. An Excel spreadsheet implementing the model is also available at 

http://www.gch.ulaval.ca/bgrandjean or http://www.gch.ulaval.ca/flarachi. Figure 3.10 illustrates the 

flow regime boundaries obtained with MLP-C for a particular trickle bed system with the following 

simulated gas-liquid-solid properties:  

 µG σL Dc φ µL ρG ε ρL Foam 
1.74E-05 7.00E-02 5.00E-02 1.00E+00 1.02E-03 1.20E+00 3.80E-01 1.00E+03 0 

 

http://www.gch.ulaval.ca/bgrandjean
http://www.gch.ulaval.ca/flarachi
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Figure 3.10 also shows the 31 experimental data points that both fulfill the above constraints and fall in 

the transition regime class. Note that the MLP-C classifier predicts a progressive changeover from LIR 

to HIR through a relatively broad band TR, particularly in the low gas load region. Obviously the level 

of regime interaction shifts in the right direction with increasing uL, uG, and ρG, as illustrated in Figure 

3.10 and Figure 3.11. Note how a low-pressure HIR operation (point in asterisk) is shifted to the 

transition regime class at high pressure (Figure 3.11). A further increase in gas density would result in 

full operation in LIR. 

Table 3.11 Knowledge augmented MLP classifiers  

Classifier 
Prior knowledge 

considered 

Misclassifi -

cation rate (%)

Loss Confusion Matrix 

Standard Multilayer 

perceptron 

J=10 hidden neurons, 

 3 output nodes 

None 

 

11.5 1005 

















197674116
114725118
96631778

 

Cost trained Multilayer 

perceptron (MLP-A) 

J=10 hidden neurons,  

3 output nodes 

Cost encoded in 

targets 

15.1 892 

















198414933
152617189
312101696

 

Continuous output MLP 

classifier (MLP- B above) 

J=12 hidden neurons,  

1 output node 

Considers a natural 

ranking of the classes, 

so LIR shares no 

border with HIR. 

14.8% 871 

















194718831
162632164
291771731

 

Continuous output 

monotonic MLP 

classifier (MLP-C)  

J=12 hidden neurons, 

 1 output node 

Considers a natural 

ranking of the classes 

and monotonicity: 

uL↑ Class  ↑;  uG↑ Class  ↑ 

ρG ↑ Class  ↓ 

16.22 % 935 

















193919829
169597192
282051704
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Figure 3.10 Decision boundaries delineating LIR, TR, and HIR classes obtained from continuous 
output monotonic MLP-C model. Experimental data points in the chart are known to belong to TR 
class. 

LIR 

HIR 

*

ρG=1 kg/m3 
 

ρG=10 kg/m3 
 

 

Figure 3.11 Incidence of gas density on regime classification decision boundaries obtained from 
continuous output monotonic MLP-C. The operating point highlighted with an asterisk (*) belongs to 
HIR class at ρG = 1 (located right of the TR/HIR border). At ρG = 10, it falls within TR band. The 
system’s properties, with the exception of gas density, are the same as in Figure 3.10 above. 
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We close this chapter by making the reader aware of the fact that all the performance measures in 

Table 3.11 were obtained by 5-fold cross validation. At each fold, new random initialization of weights 

was done, in agreement with current recommendations for neural networks practice (Flexer, 1994; 

Prechelt, 1998).  

 

3.2.5 Conclusions 
 
Most of the studies done thus far on flow regime classification in trickle beds have focused on 

correlating the liquid superficial velocity demarcating the transition between low (LIR) and high (HIR) 

interaction regimes. 

In this work, a conceptually different approach was taken, in which we modeled the class-conditional 

probabilities for the three flow patterns: LIR, TR, and HIR. Instead of formulating an unlikely sharp 

transition, a more physical TR band marking the gradual changeover between LIR and HIR was 

proposed. Instead of classical classification MLP neural networks, which use as many output neurons 

as classes, in this work we exploited class connectivity as a priori knowledge and encoded the output 

as a real variable, taking 0 at LIR, 0.5 at TR, and 1 at HIR. In doing so, misclassification between non-

adjacent classes LIR and HIR was reduced significantly. Furthermore, monotonicity with respect to 

some variables, for which a priori knowledge was available, was mathematically guaranteed through 

inclusion of constraints. This was achieved by forcing the signs of the weights in the MLP neural 

network model, and training it with a genetic algorithm-genetic hill-climber optimizer and a 

constrained optimization algorithm. This facilitated identification of an MLP model having a 

misclassification error rate of 16.2%.  The proposed classification MLP model, which incorporated 

prior knowledge of actual system behavior, is more interpretive than classical black-box neural 

correlations. 
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Table 3.12 Neural network flow regime classifier equations  
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foamigforFoam
coleascingforFoam

1
0

wij jÎ1         2 3 4 5 6 7 8 9
1 1.986E+1   7.017E+0 8.264E+0 2.436E+1 2.784E+1 -9.777E+0 -2.778E+1 -3.131E+1 1.146E+1
2 -1.199E+1   -1.043E+1 -2.281E+1 3.409E+0 -6.482E-1 -7.566E-1 1.253E+1 -2.336E+1 -2.966E+1
3 1.218E+1   1.141E+1 1.829E-1 2.109E+1 5.134E+0 -3.507E+0 -2.182E+0 -2.622E+1 2.618E+1
4 -1.203E+1   -1.053E+1 -2.478E+1 -5.899E+0 -1.750E+0 1.642E+0 1.828E+1 -2.317E+1 -3.303E+1
5 -3.540E+0   -1.487E+0 -1.041E+1 -2.095E+0 -2.347E-1 3.805E-1 4.389E+0 -4.976E+0 -1.343E+1
6 -2.013E+1   -1.409E+1 -3.009E+1 7.866E+0 -4.172E-1 5.059E+0 2.690E+1 -2.999E+1 -3.844E+1
7 -6.814E+0   -5.277E+0 -1.588E+1 5.081E-1 3.128E+0 5.048E+0 2.257E+1 -1.193E+1 -2.168E+1
8 -1.617E+1   -9.679E+0 -2.385E+1 -3.235E+0 -5.575E-1 4.170E+0 4.126E+0 1.511E+1 -5.351E+0
9 -8.867E+0   -5.328E+0 -1.556E+1 1.758E+0 -3.030E+0 4.196E+0 1.343E+0 -1.105E+1 -2.171E+1

10 -9.832E+0   -8.898E+0 -2.098E+1 2.572E-2 -2.376E+0 -9.044E+0 1.752E+1 -1.995E+1 -2.550E+1
11 -5.335E+0   -4.379E+0 -9.935E+0 1.213E+1 2.067E-1 -6.252E+0 -2.585E+1 -1.240E+1 -1.833E+1
12 -2.607E+1   -1.578E+1 -3.874E+1 1.631E+1 -1.837E+1 -5.814E-2 1.474E+1 -3.864E+1 -4.358E+1
wj 1          2 3 4 5 6 7 8 9 10
 1.943E+1   1.509E-1 5.710E-3 4.295E+1 6.556E+0 -2.789E+1 -2.725E+1 -7.936E+0 2.466E+1 -1.824E+1
*:A “user-friendly” spreadsheet of the neural correlation is accessible at (http://www.gch.ulaval.ca/bgrandjean)  



145 

3.3 Notation  
 

aG Grain specific area 

AR  Accuracy rate of a classifier Ar=1-Err  

aT Bed specific area 

C  Number of classes 

CM Confusion matrix having the size C×C 

Cost Cost matrix having the size C×C 

d Dimension of a subset of the set Xp, d≤p 

Dc Column diameter 

dE Euclidian distance 

dp Particle diameter ( ) TaPd ε−16=  

Err Misclassification rate, defined as the fraction of samples misclassified by a particular classifier. 

Foam. Foaming property: 0=coalescing, 1=foaming  

)(xig  Discriminant function of the class yi 

H Entropy function 

H0 Bed height at rest 

I(Y|Xs) Mutual information (information content) given by Xs on Y 

J Relevance criterion (I(Y|Xs) or AR(1-NN)); Number of hidden nodes in an ANN 

L Loss function  
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n Number of training instances ωk; number of samples in the design set 

 ( ){ }nryD rir ...1,)(, == xx

ni  Number of class i occurrences in the design set D 

nbx Number of divisions in the space of each variable when assessing probabilities using bins 

Nc Number of classes  

Np Number of particles per unit bed volume 

p Number of features available for a classification problem; i.e., size of Xp 

p(yi) Prior probability of yi  

)|( xiyp  Posterior probability (probability of class yi occurring, given x) 

)|( iyp x  Class-conditional density functions 

Sind(i,k) Saliency value for the input i with respect to the output k in a ANN 

u  Phase velocity 

ut Particle terminal velocity in a three phase fluidized bed 

w[i,j] Input to hidden layer weight in the ANN 

w[j,k] Hidden to output layer weight in the ANN 

wi,j, wj  ANN connectivity weights 

xp Particular realization of Xp 

Xp Set of all available features  

Xs Subset of features from Xp. Xs⊆ Xp 

x Point in the normalized input feature space x={uL, µG,uG, σL,Dc, φ, µL, ρG,ε,ρL,Foam} 



147 
 
y Particular value of the generic class variable Y; class variable taking the discrete values yi,      i 

= 1, 2…C, ; continuous variable taking the values 0 for LIR, 0.5 for TR, 

and 1 for HIR 

},,{ HIRTRLIRyi ∈

ŷ   Output of the neural network model  

ε Bed porosity 

φ Particle sphericity ( )
T

P

P a
N

N
×







 −
=

3
2

16
π

επφ  

µ  Phase viscosity 

ρ Phase density 

σ Phase superficial tension 

ωk Training instance ω={ xp ,y} 

 

Abbreviations 

ANN Artificial neural network (here, this term designates a multi-layer perceptron neural network) 

FS Feature selection 

G Gas 

HIR High interaction regime 

IBC Initial bed contraction 

IBE Initial bed expansion 

L Liquid 
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LIR Low interaction regime 

PK Prior knowledge 

S Solid 

SFFS Sequential floating forward selection 

SFS Sequential forward selection 

TR Transition flow regime 
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Conclusion 
 

In this work we addressed three key issues in neural networks modeling (regression and classification) 

of multiphase reactors data: i) feature selection (FS), ii) model design (MD) (architecture and 

parameters learning), and iii) qualitative prior knowledge matching or embedding (PK). We made 

methodological recommendations, which we validated by the resulting state-of-the-art neural network 

models. The Decision Makers’ Direct (Issue No: 01/03/1) says that:  

“The science of modeling involves converting domain reality- quantitative, and qualitative (like ethics, 

preferences, experience) to mathematical abstraction, using quantitative tools, and providing solutions 

as abstracted reality. The ultimate objective is to give quantitative expression to the decision maker's 

expertise.”  

In this light, quantitative domain reality consisted of the pairs of known input-output we had for 

training the model, while the qualitative domain reality was what we referred to as prior knowledge.  

Now, a synthesis of the main results:    

For the liquid hold-up in counter-current packed beds, a study was conducted to obtain 

dimensionless correlations that, in addition to giving a low estimate of the AARE (average absolute 

relative error), reveal monotonic trends with respect to six dimensional variables influencing liquid 

holdup: gas and liquid velocities and densities, as well as liquid viscosity and superficial tension. The 

subsidiary problematic we addressed here was how to select the appropriate dimensionless numbers to 

be used as network inputs. Many feature selection criteria exist, but we decided to evaluate the 

usefulness of features based on the error of the resulting model and the extent to which it matched 

prior knowledge in terms of monotonicity. Monotonicity was evaluated near the edges of the 

dimensional variables definition domain. A global error was defined by combining AARE on training 

and test sets with the number of monotonicity tests the model failed. This global error was minimized 

using a genetic algorithm whose operators were customized to search only among combinations with 

an imposed number of features. We maintained the model design (MD) typically used in the field: 

networks architecture determined by trial and error and weights learning with BFGS method. The 
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conclusion of this first study was that such an automated procedure was efficient. The genetic 

algorithm was able to deal with the minimization of the nonmonotonic subset goodness criterion, 

identifying an elite of 5 dimensionless numbers (BlG, WeL, St’L, K2, K3) which give an AARE of less 

than 13% on all data while matching all the necessary (but not sufficient) monotonicity conditions. 

 Using the dimensionless neural network modeling of pressure drop in randomly packed beds as 

a case study, we evaluated the effectiveness of the simple monotonicity tests we were performing near 

the edges of original variables ranges to ensure an overall monotonic behavior. We observed that a 

simple trends inspection in some points of the feature space was not necessarily representative of the 

model’s monotonicity behavior likelihood in the entire domain. Therefore, we proposed gradient 

conditions checking in the vicinity of all the points available for training. Using the same methodology 

based on the genetic algorithm, but with reinforced gradient conditions, we identified a neural model 

useful for predicting the pressure drop in counter-current packed beds as 

( χ=
ρ

∆ ,S,K,Eo,Eo,Fr,Blf
g
Z/P

B1
'
LLLL

L
). The overall AARE of the model was approximately 20% 

with 127 parameters. Compared with the model of Piché et al., (2001c) our model was superior, 

restoring the expected monotonic trends to almost 79% of the data points, compared with less than 

20% for the former model.  

As we were unable to decrease to zero the number of data points around which at least one of 

the monotonicity tests failed, we tried to combine several ANN models issued by the GA-ANN 

methodology. The point was to exploit the fact that there were different good features sets and 

architectures that lead to similar error rates. It was hoped that these models, being different, were not 

all bad in the same region of the original variables’ input space. The outputs of each constituent model 

were weighted and converted into a new prediction via a linear meta-model. The resulting predictor 

not only showed an improved error rate, but also passed the monotonicity tests in more than 92% of 

the data points, compared with 79% for the single best individual model used.   

A new aspect of this study was its dimensional approach. We tried to correlate the reactor’s 

characteristics of interest directly to the original variables, rather than to dimensionless groups derived 

from them. As case study, the same liquid holdup problem was considered. The inputs were fixed to 

eleven original variables: uG, uL, ρG, µL, aT, ε , φ, Z, DC, ρL, and σL.  The recent work of Kay and Ungar 

(1993, 2000) has shown that is possible to guarantee monotonicity of the neural model if the variables 
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with respect to which monotonicity is expected are directly fed into the neural network as inputs. Our 

contribution to their approach resides in the fact that we used concavity information (i.e., the signs of 

the second order derivatives with respect to some inputs). For concavity information matching, we 

used some necessary conditions, as the sufficient ones were unable to achieve via the weights’ signs. 

The learning of the weights under monotonicity and concavity penalties was performed with a genetic 

algorithm-genetic hill climber optimizer, which proved superior to classic binary GAs. This 

evolutionary optimization algorithm combines classic genetic search and hill climbing in attractive 

regions of space. The approach efficiency was demonstrated by obtaining a neural model that 

guaranteed increasing liquid-holdup with increasing uG, uL, µL, σL, and aT or decreasing ρL, while the 

slope increased with uG and decreased with uL in some regions of the validity ranges. This model can 

be considered a contribution because it is less complex and more accurate than other neural and 

empirical correlations while matched all the priori knowledge considered in terms of mono-concavity.  

A second group of applications considered in this dissertation was the supervised classification. 

As with the regression problems, feature selection was the first step to consider. We studied different 

feature selection algorithms, which allowed us to identify the most relevant variables in two 

multiphase reactors classification problems. Relevance here was assessed in terms of i) mutual 

information, which is a measure of the statistical dependence between feature subsets and the class 

variable, and ii) accuracy rate of a reliable one-nearest neighbor classifier that was simpler to operate 

than an ANN. A third relevance criterion, based on Garson’s saliency index, interpreted the weights’ 

size of trained neural network classifiers. We extended it to work with multiple outputs neural 

networks. The selection algorithms that targeted maximization of the relevance criteria (mutual 

information and accuracy rate) in charge of the combinatorial search were sequential forward selection 

and the (l,r) search method. We devised here a hybrid filter-wrapper approach, which in the first step 

used the mutual information criterion and SFS to obtain a set of class-informative features. This set 

was updated by using the (l,r) search to maximize the performance rate of a 1-NN classifier. This 

method is faster that a mere (l,r) search starting with an empty set, and gives the same results on the 

test problems. The different selection schemes were applied to four problems. The first two problems 

were benchmarks (synthetic and real) to test whether the schemes were able to find the proper 

solutions. The last two problems were real multiphase reactors: a) flow regime identification in trickle 

beds, and b) bed initial contraction/expansion in three-phase fluidized bed reactors. For both of these 

problems, the ULaval multiphase reactors databases were used to identify the variables (features) most 
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relevant for classification. In all cases, the feature reduction induced an increase in classification 

performance, except for the bed expansion/contraction, where reducing the number of variables from 

10 to 5 slightly decreased the accuracy. In the case of flow regime classification, the variables uL, µG, 

uG, σL, Dc, φ, µL, ρG, ε, ρL, and Foam were selected as informative about the flow regime. For bed 

expansion/contraction in three-phase fluidized beds, the most relevant features were ρs, σL, uL, ut, and 

H0.  

The final section of Chapter Three dealt with the classification issue itself, using as 

discriminant features those identified as relevant in this first step. We considered here only the flow 

regime classification in trickle bed reactors. Most work thus far in terms of empirical correlations for 

flow regime classification has focused on the correlation of the liquid superficial velocity at transition 

between low (LIR) and high (HIR) interaction regimes and the physical properties of the three phases 

involved. We used a conceptually different approach by using a neural network model to approximate 

the probability of each class occurring as a function of the phases’ properties. Instead of obtaining a 

simple transition curve between classes LIR and HIR, we obtained a band, a physical manifestation of 

the gradual changeover in reality. The neural network model had an overall misclassification rate of 

about 16%, assessed by 5-fold cross-validation on 5061 data samples. While classic use of MLP neural 

network in classification assumes as many output neurons as classes, we used the class connectivity 

information as apriori knowledge and built a single output neural network classifier. Actually, we 

encoded the output as a real variable, taking 0 value at LIR, 0.5 at TR, and 1 at HIR. By so doing, the 

misclassifications between non-adjacent classes LIR and HIR were significantly reduced. Furthermore, 

the monotonicity of the interaction level between gas and liquid, with respect to the gas and liquid 

superficial velocities and gas density, was mathematically guaranteed. This was achieved by 

constraining the signs of the neural network model. The weights optimization was conducted with the 

genetic algorithm-genetic hill-climber optimizer designed previously. The resulting model was fine-

tuned with a constrained optimization algorithm. 

Following are some recommendations when building neural networks correlations for continuous 

(regression) or discontinuous (classification) reactors characteristics, assuming sufficient data records 

are available, and the important independent variables describing the three phases are available. This 

hypothesis was considered to hold in the cases studies we treated in his work. The importance of 

having his hypothesis true may be illustrated with the following popular quote in computer modeling: 
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 “A theory has only the alternative of being right or wrong. A model has a third possibility: it may be 

right, but irrelevant.”  Eigen, Manfred (1927- ), The Physicist's Conception of Nature 

It is, however, not enough to have good data to obtain trustful models; we must also use any available 

qualitative information and select only the most relevant features. Recommendations follow: 

¾ Use dimensional variables as network inputs, rather than dimensionless groups formed 

by their nonlinear combinations. Reasons for this include following: I) the performance of 

the resulting model is not significantly affected by input representation (dimensional or 

dimensionless); II) it is more difficult to identify a good set of dimensionless groups than to 

identify the dimensional variables relevant to the modeling task; III) when monotonicity of the 

model’s output is expected with respect to some dimensional variables, it is impossible to 

guarantee it if nonlinear combinations of them (dimensionaless numbers) are used as inputs. Of 

course, we do not underestimate here the power of the dimensionless analysis, which allows 

extrapolation of the model’s applicability outside the ranges of the raw variables within the 

training data base. 

¾ Determine a set of relevant features using mutual information between sets and output 

variables or the accuracy of a custom model, while using as combinatorial search algorithms 

either sequential methods or genetic algorithms. Genetic algorithms are most suitable when the 

search space is large and a good guess of the number of variables to search for is available. 

¾ Use monotonicity and concavity prior knowledge, if available. In regression problems, this 

squeezes the confidence band of the model (Kay and Ungar 1993, 2000) and reduces 

overfitting. Moreover, a guaranteed monotonic model is more interpretable. The interpretability 

increases because one will know in advance how the model’s output will behave when the 

inputs vary. In classification problems, using information on connectivity of classes, as well as 

different misclassification costs, may reduce the chance of some particular types of 

misclassifications.  

¾ Compare the crossvalidated performance measure of the neural network classifiers with 

classic statistical discriminants or decision trees to ensure that there is no simpler or more 

interpretable model which might perform as well as the neural network model. 
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Appendix 1 
 Pseudo algorithm for PCE computation of a trained ANN  

 

1. indexPoint=0;  (counts the points around which the model fulfills all the gradient conditions 

eqs. 1-5) 

2. For each point pk of the training data set, k = (1..NT), pk = {uG,uL,ρG,µL,aT,ε ,φ,Z,DC,ρL,σL,µG}: 

• indexVar=0. (counts how many among eqs. 1-5 will be satisfied around point k) 

• For each testing variable vj ∈{UG,UL,ρG,µL,aT}, i.e., each j,  j=1..5: 

o Calculate the maximum increment ∆ which, when added to or subtracted from 

pk,j, still yields all the numbers N1 to Nm in the validity ranges. (determine a 

validity range for the variable j)  

o Calculate N1 to Nm for pk, pk,j
+∆ , pk,j 

-∆ (the inputs of the ANN in three points) 

o If y(calc)(pk,j
-∆) ≤ y(calc)(pk) ≤ y(calc)(pk,j

+∆) (ANN model presents monotonically 

increasing trend with respect to vj) 

� indexVar=indexVar+1 (ANN model has passed the test for the variable 

vj in point pk) 

• If indexVar=5 (ANN model is phenomenologically consistent in the vicinity of point pk) 

o indexPoint= idenxPoint+1 

3. Return the phenomenology consistence error PCE as (1-indexPoint/NT)*100. 
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Appendix 2  

Proof that monotonic neural networks with respect to dimensional variable vs, may not be 

guaranteed if the network’s inputs are functions of the variables vs. 

For illustration, let us assume that the liquid holdup εl is a function of two dimensionless numbers 

constituting the neural model inputs: 
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respectively. 

Let us assume that the network function f(w,x) exhibits decreasing non-strict monotonicity with respect 
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The sign of this expression is a function of the data point x where it is evaluated (the properties of the 

liquid phase and bed); and it may be judged on factors other than weight signs. 
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Appendix 3  
The user interface for the MONMLP software developed in the JAVA language to carry out the 

training of monotonic ANNs with genetic algorithms. This software may be downloaded from 

http://www.gch.ulaval.ca/∼grandjean. 

 

Main window of MONMLP, plotting the evolution of the AARE of the model in time. The generation, 

the composite criterion, and the penalty terms for monotonicity and concavity are also displayed. 

http://www.gch.ulaval.ca/grandjea
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The Session Settings window, where the user chooses the data set, network architecture, and 
monotonicity and concavity expected in the data, as well as some tuning parameters of the GA 
optimizer. 
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Appendix 4  
The (l,r)-search algorithm, or its particular cases (1,0)-search (or SFS) and (0,1)-search (or SBS), as 

described by Pudil et. al (1994, and adapted for the current work notations.  

 
Input: 
Xp={Xp,i | i=1,…, p}  //the set of all features// 
Output: 
Xs,d={Xs,i | i=1,…, d, Xs,i ∈ Xp } , d=0,1,…, p; //the selected subset of size d// 
Initialization: 
if l>r  then  d:=0; Xs,d =φ ; go to Step 1 
             else d:=p; Xs,d = Xp ; go to Step 2 
Termination: 
 Stop when d equals the number of features required 
Step 1 (Inclusion) 
Repeat l times 
      //the most significant feature with respect to X)(maxarg: ,

,

XJX ds
X dsp

+=
−∈

+ X
XX

s,d // 

     ; k:=k+1; +
+ += Xdsds ,1, : XX

Step 2 (Exclusion) 
repeat r times 
      //the least significant feature in X)(maxarg: ,

,

XJX ds
X ds

−=
∈

− X
X

s,d // 

     ; k:=k-1 −
− −= Xdsds ,1, : XX

go to step 1 
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