

TARCA ADI LAURENTIU

NEURAL NETWORKS IN MULTIPHASE REACTORS

DATA MINING: FEATURE SELECTION, PRIOR
KNOWLEDGE, AND MODEL DESIGN

Thèse présentée
à la Faculté des études supérieures de l'Université Laval

dans le cadre du programme de doctorat en génie chimique
pour l’obtention du grade de Philosophiae Doctor (Ph.D)

FACULTÉ DES SCIENCES ET DE GÉNIE

UNIVERSITÉ LAVAL
QUÉBEC

AVRIL 2004

© TARCA Adi Laurentiu, 2004

i

Résumé
Les réseaux de neurones artificiels (RNA) suscitent toujours un vif intérêt dans la

plupart des domaines d’ingénierie non seulement pour leur attirante « capacité

d’apprentissage » mais aussi pour leur flexibilité et leur bonne performance, par rapport aux

approches classiques. Les RNA sont capables «d’approximer» des relations complexes et

non linéaires entre un vecteur de variables d’entrées et une sortie . Dans le contexte des

réacteurs multiphasiques le potentiel des RNA est élevé car la modélisation via la

résolution des équations d’écoulement est presque impossible pour les systèmes gaz-

liquide-solide. L’utilisation des RNA dans les approches de régression et de classification

rencontre cependant certaines difficultés. Un premier problème, général à tous les types de

modélisation empirique, est celui de la sélection des variables explicatives qui consiste à

décider quel sous-ensemble des variables indépendantes doit être retenu pour

former les entrées du modèle. Les autres difficultés à surmonter, plus spécifiques aux RNA,

sont : le sur-apprentissage, l’ambiguïté dans l’identification de l’architecture et des

paramètres des RNA et le manque de compréhension phénoménologique du modèle

résultant.

x y

xx ⊂s

Ce travail se concentre principalement sur trois problématiques dans l’utilisation des

RNA: i) la sélection des variables, ii) l’utilisation de la connaissance apriori, et iii) le

design du modèle. La sélection des variables, dans le contexte de la régression avec des

groupes adimensionnels, a été menée avec les algorithmes génétiques. Dans le contexte de

la classification, cette sélection a été faite avec des méthodes séquentielles. Les types de

connaissance a priori que nous avons insérés dans le processus de construction des RNA

sont : i) la monotonie et la concavité pour la régression, ii) la connectivité des classes et des

coûts non égaux associés aux différentes erreurs, pour la classification. Les méthodologies

développées dans ce travail ont permis de construire plusieurs modèles neuronaux fiables

pour les prédictions de la rétention liquide et de la perte de charge dans les colonnes garnies

à contre-courant ainsi que pour la prédiction des régimes d’écoulement dans les colonnes

garnies à co-courant. .

ii

Abstract
Artificial neural networks (ANN) have recently gained enormous popularity in

many engineering fields, not only for their appealing “learning ability,” but also for their

versatility and superior performance with respect to classical approaches. Without

supposing a particular equational form, ANNs mimic complex nonlinear relationships that

might exist between an input feature vector x and a dependent (output) variable y. In the

context of multiphase reactors the potential of neural networks is high as the modeling by

resolution of first principle equations to forecast sought key hydrodynamics and transfer

characteristics is intractable. The general-purpose applicability of neural networks in

regression and classification, however, poses some subsidiary difficulties that can make

their use inappropriate for certain modeling problems. Some of these problems are general

to any empirical modeling technique, including the feature selection step, in which one has

to decide which subset xs ⊂ x should constitute the inputs (regressors) of the model. Other

weaknesses specific to the neural networks are overfitting, model design ambiguity

(architecture and parameters identification), and the lack of interpretability of resulting

models.

This work addresses three issues in the application of neural networks: i) feature

selection ii) prior knowledge matching within the models (to answer to some extent the

overfitting and interpretability issues), and iii) the model design. Feature selection was

conducted with genetic algorithms (yet another companion from artificial intelligence area),

which allowed identification of good combinations of dimensionless inputs to use in

regression ANNs, or with sequential methods in a classification context. The type of a

priori knowledge we wanted the resulting ANN models to match was the monotonicity

and/or concavity in regression or class connectivity and different misclassification costs in

classification. Even the purpose of the study was rather methodological; some resulting

ANN models might be considered contributions per se. These models-- direct proofs for the

underlying methodologies-- are useful for predicting liquid hold-up and pressure drop in

counter-current packed beds and flow regime type in trickle beds.

iii

Foreword
The core of each chapter in this dissertation is built from the results of one or more

scientific articles, which at the time of the thesis submission were either published or in

evaluation. The first author in all six articles is also the submitter of this PhD thesis. The

introductory section in each article was edited to improve the continuity of the thesis.

Certain chapters were further edited to avoid the redundancy typical of theses built from

articles.

The first chapter contains the results of three articles dealing with dimensionless neural

network correlations. The first article, focusing on the neural networks inputs optimization

with genetic algorithms, was published in Industrial and Engineering Chemistry Research,

41(10), 2002, 2543-2551. The second, concerning primarily the match of prior knowledge

within the neural networks was published in Chemical Engineering and Processing, 42(8-

9), 2003, 653-662. The last article, studying the benefits of combining several neural

network models, was published in Industrial and Engineering Chemistry Research, 42(8),

2003, 1707-1712.

In the second chapter, another alternative-- using dimensional features directly in the

models-- is explored. In a fourth paper, which has been accepted by Computers and

Chemical Engineering (2004), we developed a procedure to obtain mathematically

guaranteed monotonic neural networks that match concavity information. Model training

was performed with a genetic algorithm - genetic hill climber optimizer.

The last chapter deals with classification issues. It is composed from two papers. While the

first is still in evaluation, the second is already accepted at Chemical Engineering Science

(2004). The former (fifth article) treats the issue of feature selection, with information

theoretic or others subset goodness measure while sequential methods are used as

combinatorial optimization schemes. A natural extension of this study is the sixth article,

which uses the features selected in the previous study to explore a multitude of

classification algorithms while keeping in mind the prior knowledge matching. As with

most scientific work, many queries and attempts from this three-year research are not

presented here, but were nonetheless valuable experientially. .

iv

To my parents Constantin and Afrodica for
their unlimited contribution to my education

and for their endless love.

v

Acknowledgments

I feel lucky to have had as thesis director Mr. Bernard P.A. Grandjean, and as co-

director, Mr. Faïçal Larachi. The pragmatism of the first, combined with the enthusiasm of

the second, were invaluable during this three-year experience. I appreciated their

receptivity concerning all aspects related to my research work.

Beside my professors, the remaining members of the thesis jury, Mr. Jules Thibault,

Mr. François Anctil, and Mr. Alain Garnier, are all acknowledged for their pertinent

criticism that allowed me to improve the quality and readability of the thesis manuscript.

vi

Table of contents

Résumé...i
Abstract.. ii
Foreword... iii
Acknowledgments ..v
Table of contents..vi
Index of tables..ix
Index of figures...x
Introduction and objectives...1
1. Neural network dimensionless correlations for continuous multiphase reactors
characteristics..9

1.1 Bibliographical review..9
1.1.1 Existing ANN dimensionless correlations ...9

1.1.2 Study target problematic and current procedures ..14

1.2 Genetic algorithm-based procedure to develop dimensionless ANN correlations
matching phenomenological prior knowledge..17

1.2.1 Methodology description ...17

1.2.1.1 GA Encoding solutions...20
1.2.1.2 Multi-objective criterion and fitness function ..20
1.2.1.3 Building the generations ...22

1.2.2 Methodology validation on liquid hold-up modeling ..27

1.2.2.1 Brief overview of the liquid hold-up database..27
1.2.2.2 Evaluation of the PPC term and choice of α, β, γ multipliers28
1.2.2.3 GA optimization through generations...32
1.2.2.4 Results and discussion ..32

1.2.3 Reinforcing the match of prior knowledge: Application to pressure drop

modeling ...35

1.2.3.1 Database and phenomenological consistency...35
1.2.3.2 New method for assessing phenomenological consistency of ANN models42
1.2.3.3 Finding ANNs with low PCE value to model pressure drop........................43
1.2.3.4 An improved correlation for pressure drop prediction46
1.2.3.5 Discussion...47

1.3 ANN meta-models to enhance prediction and phenomenological consistency..........49
1.3.1 Introduction to ANN combination schemes ..49

1.3.2 Base-models and meta-model ..50

1.3.3 Results and discussion ...55

1.4 Conclusions...58
1.5 Notation ..59

vii

2. Neural Network Dimensional Correlations for Continuous Multiphase Reactors
Characteristics...66

2.1 Bibliographical review and problematic...66
2.2 Monotonic networks ...68
2.3 Reformulation of neural network training problem with monotonicity and concavity
constraints ...70
2.4 Genetic algorithm - genetic hill climber optimizer...74

2.4.1 Reproduction (Selection) ...76

2.4.2 Recombination (Crossover) ...77

2.4.3 Mutation...77

2.4.4 Benchmarking the GA-GHC optimizer ...78

2.5 Methodology validation on liquid holdup modeling ..82
2. 6 Conclusion ...89
2.7 Notation ..90

3. Data classification in multiphase reactors ..93
3.1 Feature selection methods for multiphase reactors data classification94

3.1.1 Bibliographical review...94

3.1.2 Study objective and organization...97

3.1.3 Relevance assessment ..98

3.1.3.1 Mutual information ...99
3.1.3.2 1-NN classifier accuracy rate..102
3.1.3.3 Garson’s saliency index ..103

3.1.4 Feature selection methods..104

3.1.5 Problems and datasets description ...106

3.1.5.1 Synthetic problem...106
3.1.5.2 Anderson’s iris data ..107
3.1.5.3 Three-class flow regimes classification in trickle beds108
3.1.5.4 Two-class bed expansion/contraction in three phase fluidized beds109

3.1.6 Results..111

3.1.6.1 Synthetic problem...111
3.1.6.2 Anderson’s iris data ..114
3.1.6.3 Three-class flow regimes classification in trickle beds115
3.1.6.4 Two-class bed expansion/contraction in three phase fluidized beds118

3.1.7. Conclusions...121

3.2 Data classification: application to flow regime classification in trickle beds...........123
3.2.1 Bibliographical review and problematic..123

3.2.2 Description of flow regime database ...125

3.2.3 Supervised classification, classifiers, and performance evaluation126

3.2.3.1 Supervised classification...126
3.2.3.2 Classifiers..128

viii

3.2.3.3 Performance evaluation ..134
3.2.4 Results..136

3.2.4.1 Results with common classifiers...136
3.2.4.2 Knowledge augmented MLP classifiers ...138

3.2.5 Conclusions..143

3.3 Notation ..145
Conclusion ..149
References...154
Appendix 1..160
Appendix 2..161
Appendix 3..162
Appendix 4..164

ix

Index of tables
Table 1.1 Typical structure of the database for applying the GA-ANN methodology.........16
Table 1.2 Parameter identification strategy ..18
Table 1.3 Candidate dimensionless input variables for pressure drop modeling..................38
Table 1.4 Ranges of dimensional variables and data points I and II38
Table 1.5 Three ANN models with low AARE and phenomenological consistency in the

vicinity of point I...39
Table 1.6 Three ANN models with low AARE and phenomenological consistency in

vicinity of most training points ...39
Table 1.7 The PCE values for the two series of ANNs found by using the classic and the

new requirements ..39
Table 1.8 Compared performances of ANN models SP and CP ..46
Table 1.9 ANN normalized input and output functions and the corresponding weights......48
Table 1.10 The base models used to build the meta-model ..52
Table 1.11 The values of the weighting coefficients in the meta-model52
Table 1.12 The performances of the meta-model compared with the best and simple average

models ...52

Table 2.1 Parameters’ set of the GA-GHC optimizer used in all benchmarks and the real

problem ...79
Table 2.2 Test functions..80
Table 2.3 Results on test functions with medium dimensions number.................................80
Table 2.4 Results on test functions with large dimensions number......................................81
Table 2.5 Comparison between two correlations for liquid hold-up85
Table 2.6 εl monotonic model ...87

Table 3.1 Feature selection strategies ...98
Table 3.2 Candidate features in a synthetic problem..107
Table 3.3 Candidate features for the iris data classification ...108
Table 3.4 Candidate features for flow regime class prediction in trickle beds...................109
Table 3.5 Candidate features for the bed contraction-expansion in fluidized beds110
Table 3.6 Summary of methods M-I to M-V for the synthetic problem.............................114
Table 3.7 Methods M-I to M-V compared on the iris data classification problem.............115
Table 3.8 Methods M-I to M-V compared on flow regime classification116
Table 3.9 Ranges of input variables in the flow regime classification126
Table 3.10 Results on flow regime classification problem with statistical and neural

network classifiers...137
Table 3.11 Knowledge augmented MLP classifiers ...141
Table 3.12 Neural network flow regime classifier equations ...144

x

Index of figures
Figure I. 1 Synthesis of research topics and methodology covered in this work.8
Figure 1.1 Logical flow diagram for the GA-ANN methodology.19
Figure 1.2 Bit string representation of the m-input selector, S. ..20
Figure 1.3 Stepwise construction of the composite criterion, Q(S)22
Figure 1.4 Successful trial to produce 4 one-bit valued specimens in the modified two-step

two-point crossover...24
Figure 1.5 Unsuccessful trial to produce a 4 one-bit valued specimen in the first step of the

modified two-point crossover ...24
Figure 1.6 The m-conservative modified mutation: case of “0 → 1” mutation followed by

repair–mutation ...26
Figure 1.7 Best and population averaged criterion Q(S) in a typical GA run.......................31
Figure 1.8 Evolution of best criterion for various numbers of ANN inputs, m.33
Figure 1.9 Parity chart of the ANN model εL = ANN(BlG, WeL, St’L, K2, K3)...................34
Figure 1.10 Phenomenological behavior of four ANN models around point I.....................40
Figure 1.11 Phenomenological behavior of four ANN models around point II40
Figure 1.12 Phenomenological behavior of CP1 to CP3 ANN models around point a) I and

b) II..45
Figure 1.13 Parity chart of CP4 ANN model..47
Figure 1.14 Meta-model construction...54
Figure 1.15 The meta-model showing monotony with respect to uL and accuracy in

prediction for data point p. ..56

Figure 2.1 Typical feed-forward multilayer neural network used for function approximation

...68
Figure 2.2 Real-valued string representation of a feed-forward neural network with single

output node..75
Figure 2.3 Pseudo-code for the genetic algorithm-genetic hill climber optimizer75
Figure 2.4 Monotonic concave NN training with GA-GHC optimizer84
Figure 2.5 Surface implemented by two ANN models a) εl monotonic model b) classically

trained model...86
Figure 2.6 Evolution of model’s concavity with respect to gas velocity during training.88

Figure 3.1 Bins construction ...100
Figure 3.2 Feed-forward neural network used for classification involving Nc classes.......103
Figure 3.3 Sequential forward selection with mutual information as relevance criterion (M-

I). ...111
Figure 3.4 Sequential forward selection with accuracy rate as relevance criterion (M-II)..

...112
Figure 3.5 Saliency values for the synthetic problem (M-V) ...113
Figure 3.6 (l,r) search with accuracy rate as relevance criterion (M-III)............................117
Figure 3.7 Method M-IV applied on flow regime problem.. ..118
Figure 3.8 Sequential forward selection with mutual information as relevance criterion (M-

I) on the bed expansion/contraction problem..119

xi

Figure 3.9 Sequential forward selection with accuracy rate as relevance criterion (M-II) on

the bed expansion/contraction problem. ...120
Figure 3.10 Decision boundaries delineating LIR, TR, and HIR classes obtained from

continuous output monotonic MLP-C model..142
Figure 3.11 Incidence of gas density on regime classification decision boundaries obtained

from continuous output monotonic MLP-C..142

1

Introduction and objectives

The aim of the present work was to improve neural network modeling practice in the

context of multiphase reactors data modeling. Here the neural networks served as universal

function approximators, tackling the two general paradigms in statistical pattern

recognition: regression and classification. While in regression an attempt is made to

approximate a continuous (usually highly nonlinear) output variable given an known input

feature vector, in classification the task is to assign particular realizations of the feature

vector into a finite number of predefined classes (usually non-linearly separable and

overlapping). In multiphase reactors, the function approximation was the typical application

of neural networks thus far; i.e., formulation of some known problems in terms of

classification are less likely to be encountered in the literature.

Typically, in data mining, one disposes of a collection of data and wants to extract

as much information as possible without having the possibility to undertake other

experimental observations. Our research group (Larachi F. and Grandjean B.P.A.) gathered

almost all-nonproprietary information available for several types of multiphase reactors. In

such situations, if one tries to use neural networks to model the complex input output

relationships, the following problems are often encountered: i) feature selection (FS), ii)

model design (MD) (architecture and parameters learning), and iii) qualitative prior

knowledge (PK) matching. Most of the work stream in this thesis was directed toward these

issues, which are by themselves active research areas dealing with neural networks and

statistical pattern recognition. Besides attempting to update the multiphase reactors neural

networks modeling practice, we focused on incorporating domain-specific prior knowledge

into the neural network models. Examples of such prior knowledge information were

monotonicity and concavity (for regression problems) and different misclassification costs

and class connectivity (in classification).

 The remaining part of the Introduction section presents a short description of the

multiphase reactors general problematic, followed by the neural networks and the above-

mentioned related issues. It closes with a schematic presentation of the research path

followed in this work. A more detailed introduction and corresponding bibliographical

review will be made in each corresponding subsequent section.

2

Multiphase reactors

The multiphase reactors (Gas-Liquid-Solid) are frequently used today in the

chemical and petrochemical industry to conduct the hydrogenation of unsaturated oils,

hydrodesulphurization of petroleum feedstocks, hydrodenitrogenation, hydrocracking, etc.

(see Ramachandran and Chaudhari, 1983; Dudukovic et al., 2002). A function of the static

of the bed, the G-L-S reactors can be delimited into two main categories: fixed bed reactors

and slurry reactors. In the first category, three types of flow can be distinguished:

concurrent down flow of gas and liquid (trickle beds), down flow of liquid and

countercurrent up flow of gas, and concurrent up flow of both gas and liquid (packed-bed

bubble column). In the second category, we usually find mechanically agitated slurry

reactors (catalyst particles are kept in suspension by means of mechanical agitation), bubble

column slurry reactors (the particles are suspended by means of gas-introduced agitation),

and three-phase fluidized-bed reactors (particles suspended because of combined action

bubble movement and concurrent liquid flow).

 The design and efficiency of this equipment requires knowledge of hydrodynamics

and transport characteristics: flow regimes, pressure drop, phase holdups, mass transfer

coefficients, etc. The rigorous theoretical treatment derived from the first principles of the

multiphase flow problem remains problematic; that is why the most of these characteristics

fail to be accurately predicted using phenomenological models. A review of the multiphase

reactors problematic would reveal that the preponderant knowledge of the most important

aspects of three-phase reactors resides in the form of empirical correlations. Since the

pioneering of the multiphase systems, data has been correlated to predict characteristics, but

even today there are numerous restrictions regarding the validity of these correlations for

different systems and/or values of the operating parameters. The lack of available methods

to predict the key fluid dynamics parameters is emphasized also in Dudukovic et al. (2002).

On the other hand, the current increase in experimental data availability and quality

measured in the three-phase systems, together with the recent development of data mining

tools such as artificial neural networks (ANN), backed by an increase of computation

power, have inspired researchers to develop empirical correlations for the key

characteristics of these systems.

3

Artificial neural networks

Actually there are many examples of successful applications of ANN computing to

correlate heat, mass, and momentum transport in multiphase flow literature. ANN

correlations have been derived for the pressure gradient in distillation columns (Whaley et

al., 1999; Pollock et al., 2000) and textile fabrics applications (Brasquet et al., 2000), for

flooding inception and interfacial mass transfer in counter-current random-packing towers

(Piché et al., 2001a, 2001b), for mass transfer applications in stirred tanks (Yang et al.,

1999), trickle beds (Iliuta et al., 1999a), and fast fluidized beds (Zamankhan et al., 1997),

for the displacement of water during infiltration in porous media of non-aqueous phase

liquids (Morshed et al., 2000), for holdups and wake parameters in gas-liquid-solid

fluidization (Larachi et al., 2001), for the prediction of bubble diameter in bubble columns

(Jamialahmadi et al., 2001), and for improving simulation of multiphase flow behavior in

pipelines (Rey-Fabret et al., 2001).

 The most common artificial neural networks type used in such function approximation

applications is the multi-layered feed-forward neural network, also known as the multi-

layer perceptron (MLP) (Rumelhart et al. 1986). These “black-box” modeling tools have

gained enormous popularity in many other engineering fields, perhaps due not only to their

appealing “learning ability,” but also because of versatility and performance with respect to

classical statistical methods. Without supposing a particular equational form, MLPs are able

to mimic complex nonlinear relationships between an input feature vector x and a

dependent (output) variable y by consuming the information in a set of training samples of

known input and output values. The parameterized neural network fitting function with a

single output (approximating thus a scalar function) has the form:

⋅⋅= ∑ ∑

+

=

+

=

1

1

1

1
,

)1()2()(),(
J

j

I

i
jiijj wxwf σσwx (I.1)

where w are the free parameters called weights and I is the dimensionality of the input

vector. The J activation functions in the first layer and the single one in the output layer

 are sigmoid functions, while the I+1 component of the feature vector, , and the

)1(
jσ

)2(σ 1+Ix

4

J+1 activation function, , are set to a constant value of 1. The sigmoid function is

defined as:

)1(
1+Jσ

ze
z −+

=σ
1

1)((I.2)

Such a neural network function is capable of universal function approximation, provided

enough hidden neurons are available and σ is not polynomial (Cybenko, 1989; Hornik,

1990). Training of the neural network means determining the parameters w in such a way

that the estimate produced by the neural network)ˆ,()(ˆ wxx fy = closely approaches the

true value on a set of training samples (the design set))(xy (){ }nry rr ...1,)(, =D = xx . The

training algorithms minimize the sum of squared prediction errors on the training samples

using gradient-based techniques. See McLoone, (1997) for a review of the fast gradient-

based techniques to optimize network weights.

Problems associated with neural network modeling

The general-purpose applicability of neural networks in regression (when y is

continuous) and classification (when y is discrete) does pose some subsidiary difficulties

that can reduce their appeal. Some of these problems are general to any modeling

technique, while others are more specific to neural networks. This doctoral dissertation

analyzed these problems and devised new methodologies to handle them. In the first

category is the feature selection (FS) step, in which one has to decide which subset

should constitute the inputs (regressors) in the model. Feature selection is a method

of dimensionality reduction, which may lessen the number of samples required for model

training and increase reliability of weight estimates and model performance (Jain et al.,

2000). Feature selection requires defining a measure of goodness of the potential subsets

as well as a combinatorial optimization algorithm to generate these solutions by

maximizing the goodness measure. In the context of regression, one may use as set

goodness measure the negative value of MSE (mean squared error) or AARE (average

absolute relative error). In the context of classification, some class separability measures or

xx ⊂s

sx

5

the accuracy rate of the resulting classifier may be used to distinguish among subsets. An

excellent review of features saliency measures may be found in the dissertation of Steppe

(1994). Once a criterion for comparing the relevance of subsets is defined, a combinatorial

optimization algorithm should be used to identify the subset maximizing the criterion.

There are several kinds of such algorithms. The most straightforward is the enumerative

technique, in which one has to test each possible feature combination to pick the best one.

Others, like the sequential methods (see Pudil et al., 1994), are stepwise; i.e., start with the

single best feature (or with all features), and then add (or respectively remove) one or more

features at a time. Other procedures are in the class of genetic algorithms (GA) (see

Goldberg, 1989), where the relevance measure is maximized by evolving a population of

possible solutions (subsets).

Other problems more specific to the neural networks include the overfitting

phenomenon (also called overtraining), which appears when the neural network too closely

approaches the training data points and is not able to generalize (interpolate) well in new

situations. The literature proposes different approaches for preventing overfitting (see

Tetko, 1997; Prechelt, 1998; Gencay, 2001), but rarely can this phenomenon be avoided,

especially when data is noisy and sparse.

The non-transparency of the resulting models is perhaps the greatest deficiency of

the neural networks from an engineering perspective. When one tries to interpret a resulting

ANN model, the only information he may withdraw is the saliency of the input variables--

i.e., a measure of their contribution at the final output, as proposed by Garson (1991) or

Steppe (1994). Another interesting attempt to extract knowledge from a trained ANN

model is that of Daniels and Kamp (1998), who inferred the signs of the derivatives of the

function to learn with respect to the input feature , y ix
ix

y
∂
∂ , from

ix
f

∂
∂)ˆ,(wx where

is the trained neural network approximating . Here refers to the estimated (learned)

weights. The possibility of reducing overfitting and consequently increasing confidence in

the predictions of ANNs, while simultaneously giving more interpretability to the resulting

ANN models, is to embedded prior knowledge about the characteristic to approximate, . A

common type of a priori knowledge encountered in multiphase reactors is the monotonicity

)ˆ,(wxf

y

y ŵ

6

and in some cases the concavity of with respect to some dimensional variables describing

the G-L-S system. This knowledge, sometimes referred to as the modeler’s bias (Sill,

1998), is often found not only in chemical engineering (Kay et al., 2000) but in other fields

as well, e.g., human cognition, reasoning, decision making, etc. (Abu-Mostafa, 1993;

Wang, 1996). Consider that is the pressure drop in counter current packed beds. Then

one would expect to predict higher output with increasing gas velocity. Of course,

such qualitative prior knowledge should be supported by physical principles governing the

system and be manifested within the data. ANN models matching the monotonicity prior

knowledge have to be treated differently, whether the dimensional variables with respect

expected monotonicity are directly fed into the network as inputs or if they are first

combined into dimensionless Buckingham

y

y

)ˆ,(wxf

Π groups. In the former case, mathematically

guaranteed neural networks can be obtained by constraining the signs of the neural

network’s weights during the training process; in the latter case they can only be checked

and assessed (analytically or numerically) after training. In the context of classification,

taking as an example the flow regime classification in trickle beds, there is also some prior

knowledge that we may exploit to increase the transparency of the resulting ANN model

and boost its expected performance. Such knowledge includes the different costs associated

with various misclassifications, which means giving more penalties to more severe errors.

Additionally, one would expect that the impact of an input variable on the simulated output

of a classification model would exactly match the one observed in practice.

 Instead of including prior knowledge in the ANN model, one can associate the

ANN model with a phenomenological model, generating a hybrid predictor. Ideally this

would combine the accuracy of ANN predictors with the robustness of the

phenomenological model. For e.g., in a water treatment optimization problem, Côté et al.

(1995) used a feed-forward ANN to model the errors between the simulated responses

given by a mechanistic model and the corresponding experimental values. Iliuta et al.

(1998) and (1999b), in a multiphase modeling issue, used neural networks to predict some

parameters appearing in a phenomenological model. Acuna et al. (1999) studied several

possibilities in combining neural network models with phenomenological models, resulting

7

into so-called grey-box models that they applied when predicting kinetic rates for a

fermentation process.

In conclusion, this work focuses on three issues in the application of neural networks to

regression and classification problems: i) feature selection (FS), ii) model design (MD)

(architecture and parameters learning), and iii) qualitative prior knowledge (PK) matching.

All issues did not receive equal attention. For example, the model design (MD) was not

treated as an issue per se, but this step is mandatory in any experimentation involving

neural networks. However, in the second chapter we developed a customary procedure to

train the network, so we added this issue to the list with the more documented ones. A

synthesis of the workflow of this research is given in Figure I. 1.

Although the purpose of the study was rather methodological, some concrete finite ANN

models were obtained as proof of the underlying methodologies. These models may be

useful when predicting liquid hold-up and pressure drop in counter current packed beds and

classifying flow regimes in trickle beds.

8

Neural Networks Multiphase Reactors

Classification
Regression

Dimensional variables as ANN

inputs

 Dimensionless numbers as

ANN inputs
Dimensional variables as ANN

inputs

FS
 FS Sequential methods for combinatorial

optimization | Nearest Neighbor
performance and/or Mutual Information as

subsets’ goodness measure

MD PK PK MD

Genetic
Algorithm

minimization of
prediction error
+ PK penalties

Trial & Error for
J and gradient-

based
optimization of

weights

Verifying respect
of monotonicity

constraints in
two points

Trial & Error for
J and Genetic
Algorithm –
Genetic Hill
climber for

weights
optimization

Embedding the
monotonicity via
ANN weights’

signs and verifying
concavity

constraints in one
point of the

domain

Problem: Flow regimes classification in trickle
beds and bed contraction expansion in G-L-S
fluidized beds

Problem: Liquid Hold-up in Counter-Current reactors

 MD PK
 FS Problem: Liquid Hold-up in Counter-Current

reactors
MD PK Statistical and

Neural network
classifiers
compared

Class connectivity
and unequal costs
associated with

misclassifications

Genetic
Algorithm

minimization of
prediction error
+ PK penalties

Trial & Error for
J and gradient-

based
optimization of

weights

More robust
monotonicity

checking

Legend:
FS = Feature Selection; PK= Prior Knowledge Assessing or Embedding
MD=Model Design (architecture and weights identification)
J=number of hidden neurons in ANN

Problem: Flow regimes classification in trickle
beds Problem: Pressure Drop in Counter-Current reactors

 Combining multiple ANN models to decrease

prediction error and increase monotonic behavior.

Figure I. 1 Synthesis of research topics and methodology covered in this work. Dotted lines delineate the different investigations that
constituted the object of a publishable paper.

9

1. Neural network dimensionless correlations for
continuous multiphase reactors characteristics

1.1 Bibliographical review

1.1.1 Existing ANN dimensionless correlations
There are several types of G-L-S reactors. For most of them, researchers have tried

to propose empirical correlations (data driven models) to predict their requisite

characteristics. Although there are many such models, we limit our attention to neural

network correlations, and, in this first chapter, only to those neural network models whose

inputs are dimensionless Buckingham groups computed from the original variables

describing the G-L-S. The more consistent databases, containing experimental observations

in different types of reactors, were available to researchers when developing such predictive

neural network models. The Laval University heritage is among the most comprehensive

data sets in the world concerning the hydrodynamics and mass transfer characteristics of

multiphase reactors. A bibliographical review of publications containing neural network

modeling combined with dimensionless analysis will be given for different types of reactors

and their modeled characteristics. As this review is mostly intended to inventory such

correlations and not describe them in detail, please consult the Notation section of this

chapter for details on some dimensionless groups appearing in the text. For the sake of

simplicity, these modes are given only in a generic form, and sometimes may have identical

variables as arguments. However, the models certainly differ by the values and the number

of internal parameters (weights).

Π

Concurrent down flow fixed bed reactor (trickle beds)

The first type of reactor we considered was the concurrent down flow fixed bed reactor,

also known as the trickle bed. The pressure drop prediction in these systems is important, as

the throughput and the mass-transfer coefficients depend on the energy supplied, which is a

10

function of the pressure drop. Iliuta et al. (1999b) developed an ANN correlation for the

dimensionless liquid pressure drop LΨ for both a high interaction regime (HIR) and low

interaction regime (LIR). The equations of this model for LIR and HIR respectively are:

),,,,Re,(Re ***
bLLLGLL SXGaWef=Ψ (1.1)

 and

),,,,Re,(Re ***
bGLLGLL SXGaWef=Ψ (1.2)

A phenomenological model to predict the pressure drop for the LIR regime was given by

Holub et al. (1992) and extended by Iliuta et al. (1999b). Phase interaction factors included

in these phenomenological models were evaluated by Iliuta et al. (1998, 1999b) using

ANNs. This hybrid model combines the robustness of physical models with neural network

accuracy, as shown by Dudukovic et al. (2002).

Another characteristic of interest in the concurrent packed beds is the liquid holdup (εl),

which represents the fraction of the reactor space occupied by liquid phase. If the bed

particles are porous, as will be the case of most trickle-bed reactors, the total liquid hold-up

will be the sum of the internal (liquid held in pores of the catalyst) and external holdup. The

external contribution can be divided into static, or residual, holdup (εls) and dynamic, or

free-draining holdup (εld). Using the database of Laval University (F.L./B.G.), Iliuta et al.

(1999b,c) developed an ANN correlation for the total liquid holdup for both low and high

interaction regimes. The correlation for LIR has the form:

),,,,Re,(Re ***
, bGLLGLtL SXGaWef=ε (1.3)

The error of this model (measured as the average absolute relative error AARE) is lower

than any of the other models in HIR, according to these authors. For the low interaction

regime, it is however comparable with the error of other correlations. The overall gas-liquid

mass transfer coefficient KLa can be related to the individual gas-side and liquid-side mass

transfer coefficient as:

11

akakHaK LgAL

111
+= (1.4)

Same authors in Iliuta et al. (1999a) published several ANN models to predict the mass

transfer parameters. The predicted variables in these models are: ShL
*, ShG

* (the modified

Sherwood numbers of phases) and a (the interfacial area) function of several dimensionless

numbers. The correlations are:

),,,,,(Re bLLGLLL SScMoXWefSh = (1.5)

),,,,,(Re bGGGLLG SScXWeStfSh = (1.6)

),,,,,Re,(Re bmGLLGL SEoXFrWefa = (1.7)

The above relations are valid for both LIR and HIR.

Counter-current trickle-beds

The second type of reactor for which dimensionless neural network correlations are

encountered is the counter-current trickle-bed. One basic design parameter here is the

loading capacity. It designates the smallest superficial gas velocity, which, at a given

superficial liquid velocity “causes a discernable build-up of liquid” (Leva, 1953). The first

ANN correlation that predicts the loading capacity in these systems was presented by Piché

et al. (2001c). The correlation is given for the Lockart –Martinelli parameter that embeds

the gas superficial velocity at loading:

),,,Re,(BLLL SStGaf φχ = (1.8)

A second important characteristic of counter-current systems is the flooding capacity, or the

maximum amount of fluid the bed can hold without overflowing. There are many given

definitions of this phenomenon, which were presented by Silvey and Keller (1966), but it is

basically the operating point beyond which a tiny increase in gas velocity produces a

substantially important change in the pressure drop and liquid hold-up in the column.

12

Recently, an ANN correlation for the gas superficial velocity at flooding (UG,Fl) was

proposed by Piché et al. (2001a). The correlation is given for the Lockart-Martinelli

parameter that includes the gas superficial velocity at flooding point:

),,,Re,(BLLL SStGaf φχ = (1.9)

Piché et al. (2001d) proposed a correlation for the dimensionless frictional pressure drop:

()χ,,,,Re,,Re BLLLGGLGG SStGaGaff = (1.10)

and for the liquid hold-up (2001e) :

(LLLGGT OhFrStFrfh ,,Re,,=) (1.11)

The gas to liquid mass transfer coefficients were correlated using the same approach by

Piché et al. (2001b) via the dimensionless gas (or liquid) film Sherwood number (ShL/G) as

a function of six dimensionless groups: Reynolds (ReL), Froude (FrL), Eotvös (EoL), the gas

(or liquid) Schmidt number (ScL/G), the Lockhart-Martinelli parameter (χ), and a bed-

characterizing number (K). Using the ANN correlation and the two-film theory, a

reconciliation procedure was implemented, resulting in better predictions of the gas (or

liquid) overall volumetric mass transfer coefficients.

Concurent up-flow packed beds

The last type of fixed bed reactors that we will discuss is the concurrent up-flow packed

beds. The frictional pressure drop in these systems has been investigated by a number of

researchers, including Turpin and Huntington (1967), who used the friction factor approach,

and Colquhoun-Lee and Stepanek (1978), who suggested that the two-phase pressure drop

data should be correlated with a single-phase energy dissipation of liquid. Larachi et al.

(1998) proposed the following ANN correlation:

13

)(LLGLLLLG MoStFrXff ,Re,,,= (1.12)

between the gas-liquid frictional pressure drop and the physical properties of the phases

embedded into the dimensionless numbers given in (1.12).

Gas and liquid holdup are also important design parameters of three-phase fixed-bed

reactors with concurrent up-flow. If one variable is known, the other can be estimated from

the equation:

BLG εεε =+ (1.13)

An ANN correlation for the external liquid holdup was determined by Bensettiti et al.

(1997):

(LLmLGbLLL FrEoSCaXf /Re,,Re,,,=)ε (1.14)

The above bibliographic review contains most of the ANN correlations built for counter-

current trickle-bed, concurrent trickle-beds, and fixed-beds with concurrent up-flow. Some

correlations are compared with other empirical and / or phenomenological models in Iliuta

et al. (1999d). The neural network models published by these authors have multi-layer

perceptrons with logistic sigmoid transfer functions in the hidden and output nodes.

Weights were determined using the computer software developed by Cloutier et al. (1996),

which uses Broyden-Fletcher-Goldfarb-Shanno's method (Press et al., 1989) to minimize

the sum of squared prediction errors on a training data set. One way to verify that the model

retained the main tendencies in data and was not overtrained was based on monotonicity

tests simulating the output of the model in some ranges of the dimensional variables. The

authors also had to select the most suitable dimensionless numbers to use as networks input

vector.

The chemical engineering literature presents same kind problems for other types of

chemical reactors. Jamialahmadi et al. (2001) developed a dimensionless RBF (radial basis

function) neural network correlation for the bubble diameter in bubble columns. These

authors did not devise the resulting model to be used as a predictor for the respective

characteristic (the bubble diameter), as was the case in previous research; instead, they used

14

the ANN model to generate artificial data (input-output pairs) to fit an imposed form

empirical correlation, which was less accurate, but still gave a low prediction error. In all of

these studies, however, the ANN was checked to see if it would predict smooth monotonic

outputs when some dimensional variables (here, the liquid viscosity and surface tension)

composing the dimensionless inputs of the ANN (here Bond, Froude, and Galileo numbers)

were increased.

1.1.2 Study target problematic and current procedures
Until recently, identifying the most relevant ANN model’s inputs, generally dimensionless

Buckingham Π groups, has been a laborious trial-and-error procedure. It consists of

choosing an arbitrary combination of inputs and training on a learning data set several ANN

models differing by the number of nodes in their hidden layer, J. The resulting models are

further tested on a validation data set to evaluate their generalization performances. The

ANN model to be retained among all the simulated ones is the one that yields the smallest

relative error on both training and generalization data sets. Thence, the topology of the

model is thoroughly tested for phenomenological consistency within the valid range of the

working database to determine whether it exhibits the expected trends. Any inconsistent

behavior disqualifies the choice.

Until now, this time-consuming approach was not automated because the human expertise

regarding the phenomenological consistency was somehow difficult to formulate

mathematically into an optimization criterion. Nothing ensures that this blind-search

approach can successfully identify the most relevant set of dimensionless inputs. This is

especially true in multiphase flow context, where the dimensionless groups abound and the

combinatorial problem is explosive. Finding the best ANN model would become a matter

of chance. Assuming agreement between an ANN model and the expected physical

evidence can be assessed automatically using an expert-system of rules, the trial-and-error

method would become suitable for a computer algorithm. However, the main problem

would remain: how do we find the fittest input combination when the evaluation of all the

combinations is CPU time-consuming?

15

Genetic algorithms (GA) have been successfully applied to such combinatorial problems

where high quality solutions within reduced search times are needed. Based on the

mechanisms of natural selection and natural genetics, GAs can extract the information from

evaluated input combinations, i.e., parent specimens, while assuring good exploration of the

search space (Goldberg, 1989). GAs have also been combined with ANNs in several

different ways. GAs have been used to generate i) the ANN connectivity weights (Morshed

et al., 1998), ii) the ANN architecture (Blanco et al. 2000), and iii) ANN architecture and

weights simultaneously (Gao et al., 1999)

Problem statement

The dimensionless neural network models identification given the discussion so far could

be summarized simply as the following:

Having, as in Table 1.1, a sufficiently large database (N occurrences) in the form of

dimensionless Buckingham Π groups, where M candidate Π groups, CI1, CI2 … CIM

(N>M >> 1) embed redundantly the physical and operational parameters stemming

from a process, find an ANN model that uses, as inputs, only a subset of m pertinent

Π groups among the M ones, in order to predict an output y, a key process

characteristics. The three-layer ANN model to identify, in the case of a single

output, is described by the following set of equations (using normalized data and

sigmoid activation functions):

−+

=

∑
+

=

1

1

exp1

1ˆ
J

j
jj Hw

y (1.15)

with 1 ≤ j ≤ J

 J j 1
exp1

1
1

1

≤≤

−+

=

∑
+

=

m

i
iij

j

Iw
H (1.16)

where:

16

m is the number of inputs, I

for 1 ≤ i ≤ m, Ii = CI S(i) ∈ {CI1,CI2,…CIM} with S, an m-input selector (sub-set).

J is the number of hidden neurons in the middle layer; Im+1= HJ+1 =1 are the biases;

wj and wij are the connectivity weights.

The models described by these equations should fulfill the following requirements:

i) Accuracy: The model must be very accurate, preferably to the level of experimental

error with which the output is measured.

ii) Phenomenological consistency: The model to be built must preserve, at least within

the database-documented domain, the expected trend of the output (monotonic

increasing or decreasing) in accordance with all known aspects of the process physics.

iii) Low complexity: The ANN model must preferably involve a minimal number of

inputs (m Π groups) and hidden neurons (J), resulting in a correspondingly minimal

number of connectivity weights (the 1J2Jm +⋅+⋅ neural fitting parameters).

Table 1.1 Typical structure of the database for applying the GA-ANN methodology

Candidate Inputs

(independent variables)

Output

(dependent variable)

CI1 CI2 … CIM y

CI1,1 CI1,2 … CI1,M 1y

CI2,1 CI2,2 … CI2,M 2y

… … … … …

CIN,1 CIN,2 … CIN,M Ny

17

1.2 Genetic algorithm-based procedure to develop dimensionless
ANN correlations matching phenomenological prior knowledge

1.2.1 Methodology description
The present contribution is intended to provide an integrated GA-ANN methodology to

facilitate the development of an ANN regression model (three-layer perceptron type) on a

given problem. The GA implemented in this study was designed to identify the most

relevant ANN input combination resulting in a neural model. This is done by minimizing a

multi-objective criterion that includes ANN prediction errors on the learning and

generalization data sets, and, most importantly, a penalty function that embeds the

phenomenological rules accounting for ANN model likelihood. The integrated GA-ANN

methodology is illustrated on a comprehensive liquid holdup database of counter-current

randomly-dumped packed towers with the aim of finding the best liquid hold-up ANN

correlation.

A typical approach in solving multi-objective problems consists in optimizing a primary

response function while turning the other functions into constraints (Viennet et al., 1995).

The genetic algorithm practice, on the other hand, consists of optimizing a composite

objective function which sanctions violations of the restrictions by means of the penalty

method (Goldberg, 1989). In our problem, we combined approaches. Table 1.2 reports, in a

hierarchical order, the parameters to be identified and how their searches have been

managed and integrated.

As the number of inputs, m, and the number of hidden nodes, J, must be low to minimize

model complexity, they have been varied by discrete sweeps in selected ranges. m has been

varied in the range [4;6] and J has been varied in the range [2m-1;2m+3], as suggested by

Maren (Maren et al., 1990, pag. 240). The determination of the input selector S consists of

the identification of m pertinent inputs among M ones. This proves to be a tedious task; the

search space of combinations is large, and the solution S must meet both phenomenological

consistency and accuracy of the resulting ANN model.

18

Table 1.2 Parameter identification strategy

Parameter to
identify

Search method Objective function

m Trial and error in the range
[mmin, mmax]

Expert decision

 S Genetic algorithm, using
binary bit strings

 Multi-objective Fitness Eq.

 (1.19)

 J Trial and error in the range
[Jmin, Jmax]

 Multi-objective Criterion Eq.

 (1.17)

 wj ; wij BFGS variable metric
method

Least square on prediction errors

()∑
=

−=
TN

k
kk yySSE

1

2ˆ

m, number of inputs; S, input selection operator; J, number of hidden nodes; wj, wij, connectivity weights;
NT number of training samples

There are few search techniques-- such as: enumerative technique, random walk, simulated

annealing, and GA-- that find solutions over discrete domains using only the value of the

function in different points of the domain. Because of its robustness (Goldberg, 1989) and

natural appeal, the GA technique is employed in this work for searching the best-input

selector S. The connectivity weights wij and wj are adjusted by minimizing the sum of

squares of the prediction errors on part of the data, referred to as the training data set, using

the Broyden-Fletcher-Goldfarb-Shanno's variable metric method (Press et al., 1989). The

remaining data are used to evaluate the generalization capability of the ANN model. This

step has been processed with a slave software, NNFit (Cloutier et al., 1997). The integrated

GA-ANN procedure used to handle the problem is presented in Figure 1.1 and will be

detailed in the following sections.

19

Expert selection of the best
m-input selector, S, and its associated

m-input ANN model.

Stop

m≤mmax

m=m+1

Yes No Is population
convergence attained?

For each specimen of the population:

 Evaluate Fitness

 -Build (Jmax-Jmin+1) ANN models, using slave software

NNFit
-Evaluate criteria for all models

Randomly initialize a population of m-input selectors, S

Start: Select mmin, mmax, Jmin, Jmax . Initialize m= mmin

Generate a new population of
m-input selectors by applying:

- Reproduction
- Modified crossover
- Modified mutation

Yes

No

Figure 1.1 Logical flow diagram for the GA-ANN methodology.

20

1.2.1.1 GA Encoding solutions
The GA approach requires a string representation of the m-input selector, S. In our context,

S is a selection of indices representing some of the candidate input variables of the database

sketched in Table 1.1. The encoding modality chosen was M-sized bit strings, allowing

only m “one bit” values per string (Figure 1.2). In this binary representation of solutions, M

corresponds to the total number of candidate input variables (or input columns) in the

database (Table 1.1). The “1” at a given rank of the string stands for a selected input

occupying the same rank in the database. Conversely, the “0” stands for an input variable

being discarded.

Candidate inputs of Table 1.1

Binary string m-input selector S

M 5321 4 …… p

0 1110 0 …… 1

Selected inputs: First input S(1)=2

 Second input S(2)=3

 Third input S(3)=5
 ………
 m-th and last input S(m) = p

Figure 1.2 Bit string representation of the m-input selector, S.

1.2.1.2 Multi-objective criterion and fitness function
To identify the best input selector S and its related ANN model fulfilling the requirements

i)-iii) of Section 1.1.2, the composite criterion Q was formulated:

)(min)(
maxmin

SS JJJJ
QQ

≤≤
= (1.17)

with

21

)]([)()()(QJ SSSS JGJJ ANNPPCANNAAREANNAARE ⋅ +][⋅ +][⋅= Τ γβα (1.18)

In Eq. (1.18) AARE[ANNJ(S)]T is the average absolute relative error the ANN (having J

hidden nodes) achieves on the training data set for a given input combination (or specimen)

S. Equivalently, AARE[ANNJ(S)]G measures is the accuracy of the ANN model on the

generalization data set remaining after optimizing the neural connectivity weights using the

training set. The composite criterion of a penalty for phenomenological consistency,

PPC[ANNJ(S)] ideally guarantees that the model will exhibit the behavior expected of the

simulated output. By “expected behavior” we mean an ensemble of prescribed behavioral

rules known to govern the phenomenon of interest, and which are embedded, as will be

shown in §1.4.2, in the term PPC[ANNJ(S)]. Ideally, the penalty term is zero if the

topological features of the ANN function meet all the rules. The role of the weighting

multipliers α, β, and γ is to enable more flexibility in targeting models that fit better the

training data set or finding models that generalize better while still satisfying, through the

PPC term, the phenomenological consistency at various degrees. The choice of α, β, and

γ values is described in the next sections. The stepwise construction of the criterion Q(S) is

shown in Figure 1.3.

In the genetic algorithm practice, fitness maximization is preferred to the classical

minimization problem. Hence, the better the solution, the greater is its fitness value. Since

every minimization problem can be turned into a maximization problem, the composite

criterion Q(S) can easily be switched into a fitness function using the simple linear

transformation (Friese et al., 1998):

)()(max SS QQCFitness −⋅= (1.19)

where C is a conversion coefficient greater than 1 to ensure positive fitness function values,

and Qmax is the maximum value of Q among the population having MAXPOP specimens, S.

22

hidden nodes

Test all ANNs for
phenomenological

consistency

Evaluate for all ANNs
QJ (S)= α AARE[ANNJ]T + β AARE[ANNJ]G +

γ PPC[ANNJ]

Evaluate for all
ANNs PPC[ANN]

Evaluate for all
ANNs

AARE[ANN]G

Evaluate for all
ANNs

AARE[ANN]T

Q (S)

Test all ANNs on a
generalization data set

Train all ANNs on a
training data set

Build (Jmax-Jmin+1)
ANNs having J

Choose one m-input
selector, S

Figure 1.3 Stepwise construction of the composite criterion, Q(S).

1.2.1.3 Building the generations
Starting with a null M-sized string (all bits are zero), each first-generation specimen was

built by turning randomly and equally probable m zeroes among the M into ones. The

operation was repeated MAXPOP times. A uniform random number generator based on the

Knuth subtractive method (Press et al., 1989) was used throughout this work. Once the

initial population was available, it was allowed to evolve in order to better identify

specimens that maximized the fitness function Eq. (1.19). The evolution process rested on

23

the so-called reproduction, recombination (crossover), and mutation operators pioneered in

the area of artificial systems by Holland (1975).

Reproduction operator

The purpose of this operator is to ensure that the fittest specimens perpetuate through off-

springs and/or have greater chances to be found in the next generation. Numerous schemes

are known which introduce various levels of determinism into the selection process. Among

them, three have been tested in this work: the roulette wheel selection with elitism, the

stochastic remainder selection without replacement, and the stochastic remainder selection

without replacement with elitism (Goldberg, 1989; De Jong, 1976). This third method was

the one retained for our genetic algorithm. With this method, best individuals are receiving

a number of identical copies in the next generation. The number is a function of its fitness;

however, even genetically inferior individuals could be duplicated in the next generation.

Modified Recombination Operator

No matter how perfect, reproduction does not create new better specimens; recombination

and mutation do. The recombination operator combines useful features from two different

specimens, yielding offspring. For instance, classical two-point crossover recombination –

taking a random start point and length for the selected sub-string – would produce from two

parent specimens (A nd B) two new children by simply interchanging a selected region in

specimen A with that corresponding in specimen B. Though this recombination proves

efficient for unconstrained GAs (Frantz, 1972; De Jong, 1976), it was unsuitable in our

context because the compulsory m one-bit values in the specimens were not automatically

preserved during parent-offspring transition. The crossover operator was modified to ensure

conservative passage with fixed m one-bit values in the offspring. This was done by

splitting the crossover operation into two distinct steps.

24

First step

A 0 1 0 0 1 0 1 0 0 1

 (4 one-bit values)

B 1 0

1 0 1 0 0 1 0 0 Î C 1 0 0 0 1 0 1 1 0 0

 (4 one-bit values) (4 one-bit values)

Second step

A 0 1 0 0 1 0 1 0 0 1 Î D 0 1 0 0 1 0 1 1 0 0

 (4 one-bit values) (4 one-bit values)

B 0 1 1 0 1 0 0 1 0 0

 (4 one-bit values)

1 0 1 0 0 0 1 0 Î C 0 1 0 0 1 0 0 0 1 0

 (4 one-bit values) (3 one-bit values)

Figure 1.4 Successful trial to produce 4 one-bit valued specimens in the modified two-step
two-point crossover

A 0 1 0 0 1 0 1 0 0 1

 (4 one-bit values)

B 0 1

Figure 1.5 Unsuccessful trial to produce a 4 one-bit valued specimen in the first step of the
modified two-point crossover

25

In the first step (Figure 1.4), a sub-string in specimen A (with random length and start

point) was selected and transferred in specimen B at the same location. The resulting child,

specimen C, was retained, provided it possessed m one-bit values like his parents (Figure

1.4) and it was distinct. If not (Figure 1.5), the first step was repeated until this condition

was satisfied or the number of trials exceeded a given value. The second step was then

resumed to create a second offspring, specimen D (Figure 1.4). This step was identical to

the first one, with the exception that now a sub-string in specimen B was transferred into A.

The recombination operator acting on the whole population of specimens issued from the

reproduction:

• Randomly split in two equal sets the population obtained at the end of the

reproduction step.

• Took all pairs of specimens having the same rank in each part and simulated a coin

toss weighted with the crossover probability pc.

• Applied modified crossover if the coin showed “true.”

Modified Mutation Operator

Mutation prevents permanent loss of useful information and maintains diversity within the

population. A specimen is altered by mutation with a low probability pm. Classical mutation

consists in changing the value of one single bit at a randomly chosen position in the string.

As in the case of crossover, classical mutation is not m one-bit conservative. Nevertheless,

to allow new features to be introduced in the specimens, a two-step mutation, namely

mutation and repair–mutation, was defined to maintain the m-one bit structure of the

strings. The repair–mutation merely reverses mutation by acting on another randomly

chosen opposite bit value in the same specimen to restore the constant amount of ones in

the string. For example, if mutation is 0 → 1, then anti-mutation is 1 → 0 on a different

randomly chosen 1-bit value in the specimen (Figure 1.6). Below is a summary of

operations used when applying modified mutation:

• A coin toss weighted with a mutation probability pm for each bit is simulated for all

the MAXPOP specimens of the population.

26

• If the coin shows “true”, mutation and anti-mutation are applied; we then skip to the

next specimen, authorizing just one operation per specimen.

A 0 1 0 0 1 0 1 0 1 0 B 0 1 0 1 1 0 1 0 1 0

B 0 1 0 1 1 0 1 0 1 0 C 0 1 0 1 1 0 0 0 1 0

Randomly chosen
one valued bit

repair- mutation

mutation

Figure 1.6 The m-conservative modified mutation: case of “0 → 1” mutation followed by
repair–mutation

The mutation probability must be kept very low; excessive mutations could erase useful

parts of the combinations, rendering the search directionless.

General remarks on the constrained GA

The parameters needed to run a GA are the population size, MAXPOP, and the crossover

and the mutation probabilities, pc and pm. The choice of these parameters is important for

the GA global efficiency. The parameter set MAXPOP=50, pc=0.6, pm=0.003 was used in

this work; it was inspired by the general recommendations of De Jong (1976) and was

adapted for the peculiarity of our constrained GA by trial and error procedures. As the

number of genes per specimen is 27, there is a 27⋅0.003=8.1% chance that an individual

will undergo a mutation.

Regarding the issue of constraining the specimens to m non-null bit strings, one could have

argued that penalty terms in the fitness function would prevent larger m-input combinations

to dominate the population. However, from an efficiency standpoint, unconstrained GAs

27

would have been less appropriate. One obvious reason is that searching among

solutions (m

∑
max

min

m

m

m
MC

∑
max

min

m

m

m
MC

min>1 and mmax<M) is far more efficient than searching among the whole

 combinations. Moreover, inclusion of penalty terms in the objective function is

desirable only if, within the interrogation space, the feasible regions are larger than the

unfeasible ones (Lohl et al., 1998). The fact that in our case is superior to

means that unconstrained GAs would have spent most of the time evaluating unusefull

solutions. Combinations exceedingly large or small are also unusable. Very low m values

do not yield accurate ANN models, whereas if m is too large, the resulting ANN models are

cumbersome. What is considered low and what is considered a high m value is problem-

dependent; m has to be specifically tailored, as explained in Figure 1.1and Table 1.2 .

∑
=

M

1m

m
MC

∑
=

M

1m

m
MC

1.2.2 Methodology validation on liquid hold-up modeling
The proof-of-concept of the integrated GA-ANN methodology will be illustrated using a

comprehensive database concerning the total liquid hold-up for counter-current gas-liquid

flows in randomly packed towers. Recall that the goal behind this approach is to identify

the liquid hold-up ANN model that best satisfies the three requirements summarized in

Section 1.1.2. The data mining role of the genetic algorithm consists in interrogating a

broad reservoir of M input vectors to enable the extraction of an elite of m inputs best

mapping, through ANN, the (hold-up) output.

1.2.2.1 Brief overview of the liquid hold-up database
A large liquid hold-up database (1483 experimental points) set up in a recent study (Piché

et al., 2001e) was re-organized by converting all the physical properties and operating

parameters relevant to the modeling of liquid hold-up into M = 27 dimensionless

Buckingham Π groups (or candidate inputs) according to Table 1.1 format. These groups,

28

listed below, cover all possible force ratios or external effects the liquid hold-up might

experience in randomly packed beds:

liquid phase Reynolds (ReL), Blake (BlL), Froude (FrL), Weber (WeL), Morton (MoL),

Eotvos (EoL), modified Eotvos (Eo’L), Galileo (GaL), modified Galileo (Ga’L), Stokes (StL),

modified Stokes (St’L), Capillary (CaL), and Ohnesorge (OhL).

gas phase ReG, BlG, FrG, GaG, Ga’G, StG, and St’G.

solid phase Wall factors K1, K2, and K3, bed parameters B, and SB.

two-phase Lockhart-Martinelli number (χ), Saberian number (Sa).

Details of group definitions are given in the Notation section of this chapter. For

convenience, here are the forces ratios that the most popular groups represent: Reynolds Ù

inertia-to-viscous; Froude Ù inertia-to-gravitational; Weber Ùinertia-to-capillary; Morton

Ù viscous-to-capillary, gravitational-to-capillary; Eotvos Ù gravitational-to-capillary;

Galileo Ù gravitational-to-capillary, gravitational-to-viscous; StokesÙ inertia-to-

gravitational, gravitational-to-viscous; Capillary Ù viscous-to-capillary; Ohnesorge Ù

viscous-to-capillary.

The database has N = 1438 rows and M = 27 columns of candidate inputs. The best m-

inputs selector, S, to be identified must contain a minimum number of elements, m. It has to

be found among all possible combinations of M = 27 input columns. To demonstrate how

computationally laborious this task can be, the combinatorial size for m = 5, ca. 81 000

combinations, would require 84 CPU days on a dual 800 MHz processor to identify the

optimal ANN model using an enumerative technique.

1.2.2.2 Evaluation of the PPC term and choice of α, β, γ multipliers
To run the GA-ANN procedure, the penalty for phenomenological consistency appearing in

the composite criterion Eq. (1.18) needs to be formulated. As mentioned earlier in

Section1.2.1, this term must embed some prescribed behavioral rules, which verify the

behavior of the ANN model. Such prescribed rules are inferred after tedious expert-system

analyses that combine i) thorough inspection of the trends exhibited by the liquid hold-up in

29

the database, ii) consentual observations from the literature, iii) any qualitative and

quantitative information revealed from first-principle based phenomenological models in

the field, such as the Billet and Schultes liquid hold-up models in the pre-loading and the

loading regions (Billet et al., 1993; 1999). As a result, the following six monotonicity rules

can be stated in the form of inequalities (for symbols, see the Notation section):

0
G

L >
ρ∂
ε∂

 (1.20)

0
L

L <
ρ∂
ε∂

 (1.21)

0
L

L >
σ∂
ε∂

 (1.22)

0
u L

L >
∂

ε∂
 (1.23)

0
L

L >
µ∂
ε∂

 (1.24)

0
u G

L >
∂

ε∂
 (1.25)

The total liquid hold-up (the fraction of reactor volume occupied by the liquid phase) will

always increase with the liquid throughput (uL). The same kind of impact has the increase in

the velocity of the gas stream (uG) flowing upwards counter-current with the liquid, etc.

The match of the gradient information was verified at the corners of the surface,

where is the output of the trained neural network model, and v is one of the remaining

variables (ρ

),(ˆ vuy G

ŷ

G, ρL, σL, uL or µL). For the six physical variables ρG, ρL, σL, uL, µL and uG, the

gradient conditions were considered fulfilled if they proved true simultaneously at the two

points near the edges of the corresponding valid intervals. In order to better distinguish

between models, the gradient conditions were equivalently recast into ten rules:

30

0
ˆ

&0
ˆ

&0
ˆ

121

>
∂
∂

>
∂
∂

>
∂
∂

GGG u
yyy

ρρ
 (1.26)

0
ˆ

&0
ˆ

&0
ˆ

221

>
∂
∂

>
∂
∂

>
∂
∂

GGG u
yyy

ρρ
 (1.27)

0
ˆ

&0
ˆ

&0
ˆ

121

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
yyy

ρρ
 (1.28)

0
ˆ

&0
ˆ

&0
ˆ

221

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
yyy

ρρ
 (1.29)

0
ˆ

&0
ˆ

&0
ˆ

121

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
yyy

σσ
 (1.30)

0
ˆ

&0
ˆ

&0
ˆ

221

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
yyy

σσ
 (1.31)

0
ˆ

&0
ˆ

&0
ˆ

121

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
y

u
y

u
y (1.32)

0
ˆ

&0
ˆ

&0
ˆ

221

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
y

u
y

u
y (1.33)

0
ˆ

&0
ˆ

&0
ˆ

121

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
yyy

µµ
 (1.34)

0
ˆ

&0
ˆ

&0
ˆ

221

>
∂
∂

>
∂
∂

>
∂
∂

GLL u
yyy

µµ
 (1.35)

Each index indicates the points where the gradient was evaluated: 1 at the beginning and 2

at the end of the valid range of each physical variable, while “&” stands for the logical

31

AND. A scale from 0 to 10, measuring disagreement with the monotonicity tests, was then

established to quantify the rules violated by an ANN model. The PPC term is expressed

simply as the number of rules transgressed by an ANN having J hidden nodes and using

input selector, S. If no rule was transgressed by the ANN model, PPCj[ANN(S)] = 0, and

the model had no penalty. Conversely, if the model violated all rules, the penalty was the

maximum, i.e., equal 10.

The multipliers α and β, i.e., the weighting coefficients of the training and generalization

AAREs in (1.18), were assigned the values 0.8 and 0.2, respectively. These values

corresponded to the splitting of the initial database into training and generalization sets.

Several values for the penalty coefficient γ were tested, and a value of 0.05 was then

retained. Basically, as PPC lies in the interval [0,10] the value γ=0.05 gives to the PPC

term an importance of 0.5 on a scale of 0 to 1.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 10 20 30 40 50 60 70 80

Generation

C
rit

er
io

n,
 Q

(S
)

best average

Figure 1.7 Best and population averaged criterion Q(S) in a typical GA run searching ANN
models to predict liquid hold-up: for m = 5, JMin=9, Jmax= 13. (Computational system
specification: dual CPU speed 1000 MHz, Operating system Linux, computation time 8
hrs.)

32

1.2.2.3 GA optimization through generations

As an example of the evolution of the performance of a population through successive

generations, Figure 1.7 reports both the evolutions of the average and the minimum criteria

of the population of individuals. The average criterion measures how well the population is

doing, as well as how fast it is converging to the optimal solution. The minimum criterion

indicates how well the GA has performed in finding a minimum-cost solution (Carroll,

1996). In Figure 1.7, the sharp decrease occurring at the 22nd generation is related to the

first creation of a fully phenomenologically-sought ANN model (i.e., PPCj[ANN(S)] = 0).

1.2.2.4 Results and discussion
The exposed methodology implies a systematic search with GA of ANN models for several

values of m, i.e., number of nodes in the ANN input layer, with the objective of choosing a

model with the least complexity, full phenomenological consistency, and the best accuracy.

A search was conducted by launching GA runs for m = 4, 5, and 6. The evolution through

generations of the best criterion is illustrated in Figure 1.8. The first occurrence of a full

phenomenological consistency model occurred, for m=4 and 6, after 3 and 6 generations

respectively. After 22 generations, the penalty term, PPC, became zero for the three cases.

Then the criterion reduced to the averaged sum of ARRE on both training and

generalization data sets. The ANN models presented lower criterion values with increasing

m.

Since there was no significant improvement in the prediction performance between m=5

and m=6, we retained the less complex model, i.e., that for m=5. The best ANN model

found with m = 5 involves J=12 hidden neurons and expressed as a function εL =ANN(BlG,

WeL, St’L, K2, K3). It involves significant dimensionless numbers describing the liquid,

gas, and solid phases, thus making the model appropriate for predicting liquid hold-up for

different types of beds and fluids. The model AARE is 12.8% on the whole database; the

standard deviation is 11.7 %. The model requires only 85 connectivity weights, and most

importantly fulfills all imposed 10 rules given by Eqs. (1.26)-(1.35).

33

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30 40 50 60 70 80

Generation

C
rit

er
io

n,
 Q

(S
)

m=4 m=5 m=6

Figure 1.8 Evolution of best criterion for various numbers of ANN inputs, m.

The parity chart of the ANN model, shown in Figure 1.9, shows agreement between

experimental and predicted liquid hold-up data, with also almost uniform data scatter

distribution around the parity line. The performance of the model identified using the

integrated GA-ANN procedure was slightly better than that reported by Piché et al.

(2001e).

Due to the methodology design and the GA's population-based approach, the search process

is inherently parallel. Implementation of the suggested integrated GA-ANN methodology

on parallel processing computers renders the development of ANN models extremely fast,

even using very large databases. This more efficient and automated procedure of

dimensionless ANN identification allows, therefore, in the same time, feature selection

(FS), as it optimizes the inputs of the network; model design (MD), as it finds a good

architecture and learns the weights; and a check for prior knowledge respect (PK). Of

course, in terms of model design, we use the classic well-known approaches such as trial

and error for architecture and BFGS method for weights learning.

34

0%

1%

10%

100%

0% 1% 10% 100%

Experimental Total liquid Hold-up ε l

Pr
ed

ic
te

d
To

ta
l L

iq
ui

d
H

ol
d-

up
 ε

l

Figure 1.9 Parity chart of the ANN model εL = ANN(BlG, WeL, St’L, K2, K3) for the
learning (•) and the generalization (○) data sets. Dotted lines represent ± 30% envelopes.

Contribution here in terms of PK is the use of tests to verify the prior knowledge matching

and to avoid overfitting. In terms of FS the originality also lay in the fact that the genetic

algorithm uses modified genetic operators to keep constant the number of inputs per

specimen. As the monotonicity property of the learned function was evaluated by numerical

test at the edges of the definition domain for the involved dimensional variables, it would

be reasonable to perform a study to determine representativeness of such tests of

monotonicity likelihood for the neural network model.

35

1.2.3 Reinforcing the match of prior knowledge: Application to pressure drop
modeling

In this section, the prior knowledge issue is more thoroughly addressed. Pitfalls in the

standard procedure to guarantee adherence to PK of the ANN models are highlighted. A

more robust procedure is developed and tested thoroughly to identify highly consistent

ANN models. The material presented in this section will be organized as follows:

First, some basic phenomenological consistency requirements that an ANN model must

fulfill are defined. For illustration purposes, the database of two-phase total pressure drops

in counter-current packed beds (Piché et al., 2001d) has been chosen. The deficiency of the

standard procedure is evaluated on the pressure drop correlation developed therein.

Secondly, an elaborate procedure assessing the PK match is proposed; a pseudo algorithm

for its implementation is detailed in Appendix 1. Thirdly, the capability of the GA-ANN

methodology described in (Tarca et al., 2002) is upgraded by embedding the new PK match

evaluation algorithm. This leads to high PK performance ANN models. Finally, a new

ANN pressure drop correlation is presented and its performances discussed. Later in this

chapter, a model that matches the prior knowledge will be alternatively called

phenomenological consistent (PC).

1.2.3.1 Database and phenomenological consistency
The primary database used in this study is the one described in (Piché et al., 2001d),

containing N = 5005 pressure drop records in countercurrent randomly packed towers. The

properties of the gas, liquid, and solid phases, and the measured pressure drops are

compiled column-wise in the form of a 2-D matrix.

A set of 28 dimensionless groups was selected and computed for each row in the primary

database. These dimensionless groups were those likely to contain the main variability

within the database while expressing all the possible force ratios in play. The set of

dimensionless numbers selected and presented in Table 1.3 is similar to the one listed in

Section 1.2.2.1. For the sake of simplicity, they will be designated hereafter by Ni with i = 1

36

to 28. Afterwards, a working database was constructed in which appear, in a row-to-row

correspondence, the calculated values of the dimensionless groups, together with the value

of the pressure drop we wanted to model. Hence, the working database simply maps the

primary database in a space with dimensionless variables. The working database was then

split in two fractions, the first being referred to as the training set (NT = 3503 records), and

the second as the generalization set (NG = 1502 records). However, with respect to the first

study (Section 1.1) a larger fraction of data was used for generalization (30% instead of

20%).

The basic phenomenological consistency requirements of an ANN model that predicts the

pressure drop were formulated after analyses that combined: (i) consentual observations

from the literature and thorough inspection of the trends exhibited by the pressure drop in

the primary database (Piché et al., 2001d) and (ii) any qualitative or quantitative

information revealed by the fundamental models (Billet et al., 1999; Maćkowiak, 1991).

The consentual PC requirements can be formulated as:

0)/(
>

∂
∆∂

Gu
ZP (1.36)

0)/(
>

∂
∆∂

Lu
ZP (1.37)

0)/(
>

∂
∆∂

G

ZP
ρ (1.38)

0)Z/P(

L
>

µ∂
∆∂

 (1.39)

0)/(
>

∂
∆∂

Ta
ZP (1.40)

Ideally, the simulated ANN pressure drop output is a monotonically increasing function of

each one of the five testing dimensional variables. Practically, due to the problem of

37

overfitting and local poor quality of some measured data, a model could fail to fulfill Eqs.

(1.36)-(1.40) gradient conditions simultaneously in the vicinity of some data points.

Charts illustrating that the gradient conditions (or PC requirements) can be satisfied at least

over some sub-domains in the database usually accompany several ANN correlations

published in the field (Piché et al., 2001d; Larachi et al., 1999). Typically, the search

utilized was conducted as follows: when a gradient condition is tested with respect to a

particular dimensional variable, all the other variables are assigned values corresponding to

a particular point in the primary database.

If all the gradient conditions are satisfied, the model is considered phenomenologically

consistent around the test point. Such an analysis, in the absence of an automated

procedure, is cumbersome and time-consuming. It must be repeated several times in order

to find the ANN models that best obey the gradient conditions in the domain and fit the data

points.

The question arising with this method is: will the ANN model exhibit the same type of

trend when moving to a different test point?

A search was been carried out using the GA-ANN methodology described in the previous

sections, and three distinct ANN models, M1, M2, M3, were identified. All verified the

gradient conditions Eqs. (1.36)-(1.40) in the vicinity of the test point I (Table 1.4)

belonging to the database. These models differed mainly by the dimensionless groups used

as ANN inputs. They were trained on the same training database and exhibited good

prediction performances, as shown in Table 1.5.

38

Table 1.3 Candidate dimensionless input variables for pressure drop modeling

i 1 2 3 4 5 6 7

Dimensionless
Number Ni

Reynolds
(ReG)

Blake
 (BlG)

Froude
(FrG)

Galileo
(GaG)

Mod. Galileo
(GaG

m)
Stokes (StG) Mod. Stokes (StG

m)

8 9 10 11 12 13 14

Reynolds
(ReL)

Blake
(BlL)

Froude
(FrL)

Weber
 (WeL)

Morton
 (MoL)

Eotvos
 (EoL)

Mod. Eotvos (EoL
m)

15 16 17 18 19 20 21

Galileo (GaL) Mod. Galileo (GaL
m) Stokes

(StL)
Mod. Stokes

(StL
m)

Capillary
 (CaL)

Ohnesorge (OhL) Wall factor (K1)

22 23 24 25 26 27 28

Wall factor
(K2)

Wall factor (K3) Correction number
(SB)

Correction number
(SB) (2)

Correction number
(SB) (3)

Lockart-Mart.
(χ)

Saberian number
(Sa)

Table 1.4 Ranges of dimensional variables and data points I and II

 uG
(m/s)

uL
(m/s)

ρG
(kg/m3)

µL
(kg/m.s)

aT
(m2/m3)

DC
(m)

ρL
(kg/m3)

σL
(N/m)

φ
(-)

Z
(m)

µG
(kg/m.s)

ε
(-)

Max 4.5E+0 9.0E-2 4.2E+1 4.5E-2 7.0E+2 9.1E-1 1.3E+3 7.4E-2 6.0E-1 3.0E+0 1.9E-5 9.9E-1
Average 1.1E+0

1.3E-2 2.1E+0 5.8E-3 2.2E+2 5.0E-1 1.0E+3 6.5E-2 3.1E-1 1.6E+0 1.8E-5 7.9E-1
Min 5.0E-2 4.9E-4 9.2E-1 7.8E-4 5.7E+1 5.1E-2 8.1E+2 2.6E-2 5.6E-2 3.0E-1 1.4E-5 5.5E-1

Point I 1.0E+0 2.0E-2 1.2E+0 1.0E-3 1.7E+2 2.0E-1 1.0E+3 3.5E-2 9.1E-2 1.0E+0 1.8E-5 9.7E-1
Point II 5.6E-1 1.8E-2 1.2E+0 9.4E-3 1.8E+2 6.1E-1 1.2E+3 7.2E-2 4.3E-1 2.4E+0 1.8E-5 6.9E-1

39

Table 1.5 Three ANN models with low AARE and phenomenological consistency in the vicinity of point I

ANN model Dimensionless numbers used as
inputs(*)

AARET[%] AAREG[%] AARET+G[%]

M1 N4, N8, N15, N23, N24, N28 19.9 20.5 20.1
M2

N2, N13, N18, N25, N27, N28 21.2 21.6 21.3
M3 N4, N8, N15, N23, N24, N27 20.4 21.1 20.6

Piché et al. 2001d N1, N4, N8, N15, N17, N24, N27 19.6 21.1 20.0
* The significance of the input Ni is the same as in Table 1.3

Table 1.6 Three ANN models with low AARE and phenomenological consistency in vicinity of most training points

ANN model Dimensionless numbers used as
inputs(*)

AARET[%] AAREG[%] AARET+G[%]

CP1 N13, N14, N19, N20, N24, N27 20.9 21.8 21.2
CP2

N11, N13, N14, N19, N24, N27 22.3 23.3 22.6

CP3 N2, N10, N17, N18, N24, N27 22.4 24.2 22.9
* The significance of the input Ni is the same as in Table 1.3

Table 1.7 The PCE values for the two series of ANNs found by using the classic and the new requirements

 Models found with the classic
requirements

(low AARE and phenomenological
consistency around a customary point)

Models found with the new
requirements

(low AARE and phenomenological
consistency around the majority of points)

Model M1 M2 M3 SP

CP1 CP2 CP3
PCEG[%] 53.5 66.4 54.4 81.1 22.4 14.2 22.2
PCET[%] 53.6 66.8 52.8 80.5 23.4 14.5 21.9

PCET+G[%] 53.5 66.7 53.3 80.7 23.1 14.4 22.0

40

For comparison, the Piché et al. (2001d) correlation that fulfills all five conditions at point

I, was also tested. Figure 1.10 shows the simulated effect of liquid viscosity on the pressure

drop predicted by models M1, M2, and M3 and by the model of Piché et al., (2001d)

(labeled as SP) in the vicinity of point I when the liquid viscosity varied around its initial

value. Though the predictions given by the four models were very distinct in some regions,

all the models showed the expected increasing trend of pressure drop when liquid viscosity

increased.

0

100

200

300

400

500

600

700

800

5.0E-04 7.0E-04 9.0E-04 1.1E-03 1.3E-03 1.5E-03

µL(kg/m.s)

 ∆
 P

/Z
 (P

a/
m

)

M1 M2 M3 SP

Figure 1.10 Phenomenological behavior of four ANN models around point I

800

1000

1200

1400

1600

1800

2000

5.0E-04 5.5E-03 1.1E-02 1.6E-02
µL(kg/m.s)

 ∆
 P

/Z
 (P

a/
m

)

M1 M2 M3 SP

Figure 1.11 Phenomenological behavior of four ANN models around point II

41

A viscosity-pressure drop plot similar to that in Figure 1.10, is drawn to illustrate the

behavior of the same models around point II (Figure 1.11). Two of them must be

disqualified (M3 and SP) for misbehaving in terms of viscosity impact on pressure drop

around point II because rule Eq. (1.39) is violated.

As the models were all phenomenologically consistent around point I, and not

distinguishable by their AARE values on the training and generalization data sets (Table

1.5), any one of them could have been chosen as a predictor. However, the predicted

pressure drop values would be very different from one model to another. Near point II, M3

and SP models presented abnormal gradient changes. Two main reasons could explain such

a behavior: a) in the vicinity of point II, the database did not reveal the increasing pattern of

pressure drop with viscosity b) overfitting of the data points occurred in that region.

Overfitting occurs when a network too closely approaches some training points and has not

learned to generalize new inputs. It produces a relatively small error on the training set, but

gives a much larger error when new instances are presented to the network. Early stopping

and regularization techniques are used to prevent overfitting. Early stopping uses two

different data sets. The training set is used to update the weights, and the validation set is

used to stop training when the network begins to overfit data. Regularization modifies the

network’s performance function, the measure of error that the training process minimizes.

By changing it to include the size of the weights, training produces a network that not only

performs well with the training data, but behaves predictably when exposed to new

instances. For details and examples of these anti-overfitting techniques, consult Tetko

(1997), Prechelt (1998), and Gencay (2001).

Models M1 – M3 and SP were built using early stopping. Table 1.5 shows that the

difference in errors between learning and training data sets were marginal, suggesting that

the training process was adequately stopped. The ANN models M3 and SP suggested the

contrary, as they overfit the data (Figure 1.11). Clearly, the early stopping technique alone

was not sufficient to prevent overfitting and violation of model phenomenological

consistency.

42

1.2.3.2 New method for assessing phenomenological consistency of ANN models
If ANN models are phenomenologically consistent near some points in the database, they

are not necessarily consistent over the whole database space. We therefore checked the

fulfillment of Eqs. (1.36)-(1.40) in the vicinity of every point available for training and

computed the percentage of data points for which not all gradient conditions are met. We

then defined the phenomenological consistency error (PCE) as a statistical indicator for

measuring the overall disagreement yielded by an ANN model.

Before explaining how PCE is quantified, recall that the ANN models are trained with some

of the dimensionless groups Ni (i = 1…28) taken from the working database and not

directly with the physical properties of the primary database. Obviously, each

dimensionless number spans a range that is bounded by some extreme values, i.e., Ni,min ≤

Ni ≤ Ni,max. The models are thus valid only when the dimensionless numbers evolve within

these ranges.

Suppose now a trained ANN model uses as inputs the dimensionless numbers N1 to Nm to

predict the pressure drop. Consider then a training data point, pk, in the space of the primary

database that has the form pk = {uG, uL, ρG, µL, aT, ε , φ, Z, DC, ρL, σL, µG} and for which the

experimental value of the pressure drop y(exp)(pk) is known. Consider a testing dimensional

variable, vj, from a list of five {uG, uL, ρG, µL, aT} variables, which is nothing but the subset

of dimensional variables used to coerce the ANN outputs via Eqs. (1.36)-(1.40). A

maximum increment ∆ is determined such that when added to, or subtracted from, the

initial value of the variable vj, will remain between N1 to Nm, which are recalculated with

the new values of the variable vj. (Alternatively, the increment ∆ can also take a small value

equivalent to a constant percentage of the initial value of the variable vj). Let us denote by

pk,j
+∆ and pk,j

-∆ the points that result from respectively adding and subtracting an increment

∆ from variable vj in vector pk. (For example, if j = 4, pk,4
+∆ = {uG, uL, ρG, µL+∆, aT, ε, φ, Z,

DC, ρL, σL, µG}). Accordingly, the outputs from the ANN model can be computed forwards,

central, and backwards as y(calc)(pk,j
+∆), y(calc)(pk), y(calc)(pk,j

-∆).

Provided the following order holds

43

)≤)≤) ∆+∆−
jjj ,

(calc)
,

(calc)
,

(calc) (y(y(y kkk ppp (1.41a)

the gradient (calculated forward and backward) of the ANN output is positive with respect

to the variable j when evaluated in the vicinity of point pk. If Eq. (1.41a) is satisfied by all

five testing variables {uG, uL, ρG, µL, aT}, the ANN model is phenomenologically consistent

near pk. The above procedure is repeated for all the data points available for training (k =

1…NT), and PCE is computed as the percentage of the data points around which the ANN

model fails the phenomenological consistency test. The pseudo-algorithm for PCE

evaluation is detailed in Appendix 1. A mathematical formula for PCE is

 ∑
=

≥

∂
∂

−=
T

i

j

N

i pj
v

T v
yI

N
PCE

1
011 Ι (1.41b)

 in which I is the identity function (taking the value 1 if the condition passed as argument is

true) and stands for logical intersection. Ideally, a model that fulfills the gradient

conditions Eqs. (1.36)-(1.40) near all the data points in the database would give PCE = 0%.

Such a value is unlikely to occur, due to the inherent overfitting problem and/or the local

poor quality of experimental data.

Ι

1.2.3.3 Finding ANNs with low PCE value to model pressure drop
In this section we shall present how we can obtain ANN models with low PCE values and

remarkable accuracy. There are two methods that yield ANN models that do more than

fitting the data points.

The first consists in modifying the ANN training procedure in such a way that the model

learns to fit the data and simultaneously satisfy the phenomenological constraints. For

example, the supplementary information about the function to be learned, also referred to as

hints, can be added through new data points that contain that information (Abu-Mostafa,

1993; Sill and Abu-Mostafa, 1997). A second method adopted in this work proposes not to

alter the training procedure or the data. Instead, the network’s architecture, capable of

retaining the supplementary information about the function to be learned, is searched. The

supplementary information an ANN has to learn for predicting pressure drop ensures small

44

PCE values. By means of GA, the best input selector S (combination of dimensionless

numbers as ANN inputs among the 28 candidates Ni) and the appropriate number of nodes

in the hidden layer are determined (see section 1.1.2-1.1.4).

The best input selector S and the corresponding ANN model minimizes the prediction error

and PCE. The following composite criterion, Q, is formulated:

)(min)(SS JJJJ
QQ

MaxMin ≤≤
= (1.42)

With

)]([)()(QJ SSS JJ ANNPCEANNAARE ⋅ +][= Τ α (1.43)

In Eq. (1.43) AARE[ANNJ(S)] is the average absolute relative error the ANN (having J

hidden nodes) achieves on the training data set for a given input combination S. Inclusion

in the composite criterion of a penalty for phenomenological consistency, PCE[ANNJ(S)],

ideally guarantees that the model is not likely to display unexpected behavior. The

multiplier α in Eq. (1.43) was set to 0.25 by trial and error targeting to obtain models

whose AARE[ANNJ(S)] and PCE[ANNJ(S)] were similar. This may be justified by the fact

that we give about the same importance to the training data points as we gave to prior

knowledge matching. However, as the PCE values for different combinations S were in

general higher than AARE values, a sub-unitary multiplier had to be assigned. To reduce

the computation time, the criterion Q did not include AARE[ANNJ(S)]G on the

generalization data set, as implemented in § 1.2-1.4, nor the phenomenological consistency

error PCE[ANNJ(S)]G .

Let the GA-ANN methodology search for the three best ANN models having six entries, as

in the M1-M3 models presented in Table 1.5. These models, labeled CP1, CP2, CP3 (Table

1.6), show phenomenological consistency around the majority of data points in the training

set, i.e., low PCE (<25%) and low AARE (~21%). These three models were tested around

data points I and II (Figure 1.12).

45

0

100

200

300

400

500

600

700

800

5.0E-04 7.0E-04 9.0E-04 1.1E-03 1.3E-03 1.5E-03
µL(kg/m.s)

 ∆
 P

/Z
 (P

a/
m

)

CP1 CP2 CP3

800

1000

1200

1400

1600

1800

2000

5.0E-04 5.5E-03 1.1E-02 1.
µL(kg/m.s)

 ∆
 P

/Z
 (P

a/
m

)

CP1 CP2 CP3

6E-02

 a) b)

Figure 1.12 Phenomenological behavior of CP1 to CP3 ANN models around point a) I and
b) II

All three ANN models exhibited a monotonically increasing trend around points I and II

(Figure 1.12). There was also a closer consensus in prediction by the three models,

compared to the M1, M2, M3 and SP models (Figure 1.10 and Figure 1.11).

We have just exemplified the behavior of the models with respect to one test variable (µL)

and around two custom points I and II. How well all these models behave with respect to all

the testing variables (uG, uL, ρG, µL, aT) simultaneously and around all 5005 points of the

database is given by the PCE values in Table 1.7. The best model yielded CPE = 53% (M1

or M3) when the constraint was applied at the peculiar point I (models M1-M3 and SP).

This means that among the 5005 data in the primary database, more than 2652 violated at

least one of the gradient conditions Eqs. (1.36)-(1.40). Constraining systematically all the

points in the database drastically reduced the PCE values; the best was CP2 model with

PCE = 14%. Note that to allow worthy comparisons between models, all of them had 14 to

15 hidden nodes, the same number of entries (six), and identical training epochs. CP1-CP3

models outperformed M1-M3 and SP models because the data representation of the former

models was less sensitive to noise than the latter.

46

1.2.3.4 An improved correlation for pressure drop prediction
The SP model (Piché et al., 2001d) discussed above is a seven-entry model. We decided to

search a better seven-entry ANN model using the new GA-ANN methodology and to

compare its performance to that of the SP model. The best model (named CP4) found in the

last generation explored by the GA was:

 (χ=
ρ

∆ ,S,K,Eo,Eo,Fr,Blf
g
Z/P

B1
'
LLLL

L
) (1.44)

Table 1.8 Compared performances of ANN models SP and CP

Statistics Piché et al. (2001d)
(SP)

This work (CP4)

AAREG [%] 21.1 19.9
AARET [%] 19.6 19.2
AARET+G [%] 20.0 19.4
σ G [%] 20.7 18.8
σ T [%] 19.3 19.4
σ T+G [%] 19.8 19.2
PCEG [%] 81.1 17.3
PCET [%] 80.5 16.7
PCET+G [%] 80.7 16.9
No. Weights 109 127

The comparative performances of CP4 and SP models are detailed in Table 1.8. CP4 model

restored the expected gradient conditions on the simulated output with a success of 83% for

the testing variables uG, uL, ρG, µL or aT. Its PCE was four times lower than the SP model’s.

The equations for the CP4 model are given in Table 1.9. A parity chart showing CP4 model

predictions versus measured pressure drops is depicted in Figure 1.13. A uniform

distribution of data around the parity line is present.

47

10

100

1000

10000

10 100 1000 10000

Experimental pressure drop ∆P/Z (Pa/m)

Pr
ed

ic
te

d
pr

es
su

re
 d

ro
p

∆
P/

Z
(P

a/
m

)

Figure 1.13 Parity chart of CP4 ANN model. The dotted lines represent the ±2σ envelopes

1.2.3.5 Discussion
In Section 1.2.3 we showed that the simple tests of monotonicity of the ANN output with

respect to some dimensional variables, performed at the extremities of their definition

ranges, cannot guarantee representative monotonic behavior in the entire feature space. The

PCE (phenomenological consistency error) is a better measure, as it evaluates the

monotonicity in all the data points available for training. However, a 0% PCE was not

attained; therefore, the next section discusses lowering the PCE and prediction error by

combining several different ANN models.

()∑ =
−+

= 15

1
exp1

1

j jj H
S

ω

()∑ =
−+

= 8

1
exp1

1

i iij
j

U
H

ω

 1141 15 =≤≤ Hj

66.2

1052.1
log 3

×
=

−
LGGf

S

gZ

Pf
L

LGG ρ
1∆

=

×≤

×≥
−

−

1

3

1094.6

1052.1

LGG

LGG

f

f

627.4

10637.2
log 2

1

×=
−

LBl

U
353.5

10136.3
log 6

2

×=
−

LFr

U
801.2

10442.7
log 2

3

×=
−

LEo

U
180.2

10735.2
log 1

'

4

×

=
−

LEo

U
387.0

10928.3
log 1

1

5

×
=

−

K

U

27153.2
10976.7

log 0

6

×=

BS

U
8768.3

10362.2
log 2

7

×=
−

χ

U 18 =U

LT

LL
L a

UBl
µ

ρ
=

P

L
L dg

UFr
⋅

=
2

L

PL
L

dgEo
σ

ρ 2⋅⋅
=

2
'

TL

L
L

a
gEo

⋅
⋅

=
σ
ρ

()

1

1 13
21

−

−

+=
C

PV

D
dK

ε

()ε−
=

1
hS

B
da

S

L

G

L

G

U
U

ρ
ρ

χ =

×≤

×≥
−

−

1

6

1007.7

1014.3

L

L

Fr

Fr

×≤

×≥ −

1

2

1071.4

1044.7

L

L

Eo

Eo

×≤

×≥ −

1'

1'

1014.4
1074.2

L

L

Eo
Eo

×≤

×≥
−

−

1
1

1
1

1058.9

1093.3

K

K

×≤

×≥
3

0

1049.1

1098.7

B

B

S

S

×≤

×≥ −

2

2

1078.1
1036.2

χ

χ

ωij 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 -15.625

-20.166 5.199 1.223 -0.390 -0.324 -24.203 -2.801 8.174 6.196 -13.786 0.020 1.323 -11.417
2 7.758 8.868 -0.208 -5.096 4.687 0.880 15.430 9.247 -5.896 -9.190 8.455 -6.875 6.026 10.259
3 5.833 23.015 -11.210 -1.560 21.665 -27.436 4.137 0.035 44.384 11.244 -15.656 19.684 -6.908 20.613
4 1.001 -2.220 6.854 -0.289 -15.279 28.561 -86.487 0.266 -51.511 4.074 -24.571 -17.069 4.074 -1.256
5 -27.213 16.980 12.332 -1.787 -30.549 15.451 -26.909 -1.132 -27.135 21.730 -7.706 5.382 -8.830 21.087
6 0.526 5.805 -0.622 -0.491 -100.040 -25.615 -11.960 -3.824 40.254 22.886 -29.674 -11.934 6.704 27.156
7 1.307 -1.929 5.582 -6.182 1.367 0.155 1.546 -0.087 0.899 -5.678 0.495 10.682 6.984 4.519
8 21.160 1.602

-5.781 9.120 39.939 -3.092 45.910 -3.144 6.234 -23.785 26.847 12.533 -16.151 -40.058

ωj 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 -0.846 4.307 11.544 -14.378 0.906 -5.570 -5.292 6.172 -3.426 -2.806 5.611 -0.246 2.652 -1.779 2.447

*A “user-friendly” spreadsheet of the neural correlation is accessible at: http://www.gch.ulaval.ca/∼grandjean or http://www.gch.ulaval.ca/∼flarachi

48

Table 1.9 ANN normalized input and output functions and the corresponding weights (Ranges of applicability in brackets)*

http://www.gch.ulaval.ca/grandjea
http://www.gch.ulaval.ca/flarachi

49

1.3 ANN meta-models to enhance prediction and
phenomenological consistency

1.3.1 Introduction to ANN combination schemes
In this section we study the possibility of combining several good ANNs in order to achieve

better predictions. Although all the models are individually equally good on average, they

are not on each individual point from the database. Some ANNs may be locally good, while

others, because of different inputs’ sets and architectures, may not be. Hence, combining

ANNs could create a synergistic effect, especially in the database regions where the

contrast in performance between individual ANNs is great.

This approach has been investigated in several research works (Alpaydin, 1993; Hashem et

al., 1997; Benediktsson et al., 1993; Alpaydin, 1998; Ueda, 2000), and consists in feeding

the predictions of several distinct networks, referred to here as base-models (level 0), into

an upper level-model (level 1), referred to as meta-model, which is generally linear. Meta-

model are more robust than the individual base-models because base models might be

specialized on different regions in the input space. Hopefully, they will not all be wrong at

the same point in the database space. The base models might be different by the data

representation; i.e., the learner might use different representations of the same inputs, by the

training scheme, the initial weight set, etc. Comprehensive classification of the possible

differences between the base-models, the functions, and the combinatorial strategies of their

output into a meta-model were discussed by Alpaydin (1998). An illustration of ANNs

combination in a pulp and paper industry application is presented in Lanouette et al. (1999).

In their work, the base ANN models differed mainly in the data samples with which they

were trained.

Hashem (1997) investigated combining a number of trained networks by performing

weighted sums of the outputs of the base (component) networks. An unconstrained MSE-

OLC (mean squared error-optimal linear combination) of networks with constant term,

which theoretically yields the smallest MSE, was proposed. Independently, Perrone (1993)

developed the general ensemble method (GEM) for constructing improved regression

estimates. The GEM is equivalent to the constrained MSE-OLC (Hashem, 1997). In these

50

works, the weights in the meta-model were determined by minimizing the MSE of the

meta-model on the same data on which the base-models were trained. This is simple to do,

but if base-models are highly cross-correlated, i.e., base-models are all weak in the same

regions of the input space, the meta-model will lack robustness (Breiman, 1992). Breiman

(1992) extended the Wolpert (1992) approach to stacking regressions by estimating the

meta-model regression coefficients (level 1 model) based on the performance of the base-

models (level 0 model) on generalization data. The major drawback of Breiman’s method is

its computational heaviness, since the base-models need to be retrained on the cross-

validation data (1992). In addition, the common feature to these studies on networks

combination was their focus on improving the prediction accuracy without concerning with

monotonicity constraints that the meta-model may need to match.

1.3.2 Base-models and meta-model
Consider again the pressure drop prediction problem in counter-current packed bed reactors

in which the characteristic to approximate, y, is the dimensionless pressure drop, ∆P/ρLgZ.

Let us also assume that y is contributed by a deterministic function g, such that

ε)g()y(+= pp , where ε is a normally distributed, zero-mean, random variable. Estimators

of the function g could be neural networks, e.g., multilayer perceptron, radial basis

functions, trained with pairs (pk,y(pk)). The inputs of such neural networks could be

dimensionless Buckingham Π groups “edited” from some of the dimensional variables

contained in vectors pk = {uG, uL, ρG, µL, aT, ε , φ, Z, DC, ρL, σL, µG}. The reservoir of

dimensionless numbers considered is given in Table 1.3. Using dimensionless numbers

enlarges the applicability ranges for the model but also creates ambiguity and uncertainty as

to their selection. Depending on the pertinence of these inputs, the resulting networks may

or may not be accurate and phenomenologically consistent, i.e., will not exhibit low AARE

and PCE values. The GA-ANN methodology described in section 1.2.2 and reinforced in

1.2.3 enabled identification of several networks exhibiting low AARE and PCE. Instead of

retaining the best among them and discarding the others, as we did in 1.2.3, we retained the

three best networks (referred to as bmr, r = 1,3) and built a meta-model.

51

These base-models differed by the quantity and type of dimensionless numbers they used as

their inputs, as well as by the number of hidden nodes (Table 1.10). All the other related

training parameters were the same: bm1-bm3 were trained on 70% of the available data (NT

= 3503), and the remaining 30% (NG = 1502) were used to evaluate their generalization

capabilities, as is standard in ANN modeling (Flexer, 1994). The following statistics were

computed:

i) the average absolute relative error (AARE)

() ()
()∑

=

−
=

N

k k

k
calc

k

y
yy

N
AARE

1

1
p

pp
 (1.45)

with y(pk) the experimental value of y, and ycalc(pk) the predicted value of y for the data

point pk.

ii) the standard deviation of the absolute relative error (STDEV)

() ()
() ()1

2

1
−

−

−
= ∑ =

NAARE
y

yySTDEV N

i
k

k
calc

k

p
pp (1.46)

iii) the maximum absolute relative error (MAXARE)

() ()
()k

k
calc

k

k y
yyMAXARE
p

pp −
= max (1.47)

iv) the mean square error

() ()(
2

1

1 ∑
=

−=
N

k
k

calc
k yy

N
MSE pp) (1.48)

v) the phenomenological consistence error (PCE), computed as the percentage of data

points pk in whose vicinity at least one of Eqs. (1.36)-(1.40) monotonicity constraints was

violated.

52

Table 1.10 The base models used to build the meta-model

Model Inputs(**) No.
Inputs

No. Hidden
Nodes

AARE
[%]

STDEV
[%]

MAXARE
[%]

MSE* PCE
[%]

bm1 N 10, N13, N14, N18,
N23, N26, N27

7 15 19.49 18.02 164 1.22e-2 21.6

bm2 N9, N10, N13, N14,
N21, N24, N27

7 14 19.95 18.77 195 1.29e-2 17.3

bm3 N10, N14, N17, N18,
N24, N27

6 14 21.84 20.35 194 1.56e-3 20.2

(*) MSE was computed on the log values of calculated and experimental y; (**) The significance of the input N-i is the same as in Table 1.3

Table 1.11 The values of the weighting coefficients in the meta-model

Model β1 β2 β3
AARE+STDEV – optimal meta-model 0.367 0.380 0.279

MSE – optimal meta-model 0.392 0.404 0.204

Table 1.12 The performances of the meta-model compared with the best and simple average models

Model AARE [%] STDEV [%] MAXARE [%] MSE* PCE [%]
AARE+STDEV – optimal meta-model 17.28 15.00 133 1.17e-2 7.9

MSE – optimal meta-model 17.97 16.51 148 1.08e-2 9.1
Simple average 18.05 16.69 156 1.09e-2 8.0
Best base-model 19.49 18.02 164 1.22e-2 21.6

(*) MSE was computed on the log values of calculated and experimental y.

53

The most popular measure for assessing the accuracy of a model is the MSE on the

generalization data; it does not, however, always adequately describe the quality of the

model’s fitting. More informative and relevant measures include AARE, STDEV, and

MAXARE. Among the series bm1 - bm3 (Table 1.10), bm1 was the best model, with the

lowest AARE on generalization data, while its PCE approximated that of the other two

models. The meta-model (Figure 1.14) using the n = 3 base-models bmr, was a weighted

summation of their outputs:

∑
=

⋅=
n

r
rr bmmeta

1
)()(pp β (1.49)

As y spans several decades, log values of the base-model outputs were taken as the linear

regressors of the log value of y. However, when the statistics i-v were reported, actual y

values, except for MSE, were employed.

The simplest way to estimate β is by minimization of MSE for the meta-model on the

training data (Hashem, 1997). This does no, however, necessarily, lead to the lowest AARE

and STDEV for the meta-model. To circumvent such a limitation, we defined in this work a

different optimality criterion to determine the meta-model regression coefficients β. This

AARE+STDEV criterion is simply the sum of AARE and STDEV the meta-model achieves

on the NT training data:

()
()

()
()

()
() ()1

)(1)()(1)(
2

1
11

−

 −
−

−
+

−
= ∑ ∑∑ =

==
T

N

i

N

k k

kk

Tk

kk
N

k k

kk

T

N
y

metay
Ny

metay
y

metay
N

C T
TT

p
pp

p
pp

p
pp

β

(1.50)

Proper value for β is obtained by minimizing criterion C using Newton’s method, with the

derivatives computed numerically.

54

…
…

bm1

Σ

…
…

bm2

…
…

bm3

Meta - model

β1

β2

β3

g
ZPy

Lρ

/∆
=

U G

U L

ρ G

µ L

a T

ε

φ

Z

D C

ρ L

σ L ,
µ G

Dimensional
variables
vector, p

Base-models bmr

log

log

log ^10

N 10
N 13
N 14
N 18
N 23
N 26
N 27

N 9
N 10
N 13
N 14
N 21
N 24
N 27

N 10
N 14
N 17
N 18
N 24
N 27

Selections of
dimensionless
groups

…
…

bm1

Σ

…
…

bm2

…
…

bm3

Meta - model

β1

β2

β3

g
ZPy

Lρ

/∆
=

U G

U L

ρ G

µ L

a T

ε

φ

Z

D C

ρ L

σ L
µ G

Dimensional
variables
vector, p

Base-models bmr

log

log

log 10^

N 10
N 13
N 14
N 18
N 23
N 26
N 27

N 9
N 10
N 13
N 14
N 21
N 24
N 27

N 10
N 14
N 17
N 18
N 24
N 27

Selections of
dimensionless
groups

Figure 1.14 Meta-model construction: original variables converted in different dimensionless numbers become the inputs of the base
models, whose outputs are fed in the meta-model, which predicts a dimensionless form of the pressure drop

55

1.3.3 Results and discussion
The β regression (or weighting) coefficients were determined according to Hashem (1997)

(MSE) and Eq. (1.50) (AARE+STDEV) optimality criteria. The obtained weighting

coefficients (Table 1.11) can be interpreted as the certainty of a network in its output

(Alpaydin, 1993). All coefficients are significant and close to each other. However, this is

not enough to guarantee robustness of the resulting meta-model; a potential problem that

affects estimation of the β coefficients is colinearity among base-model outputs (Hashem,

1997; Breiman 1992). Colinearity has a chance to occur because all bmr models are trained

to approximate the same function.

Let us denote by X the matrix whose columns are the log values of the outputs of the bmr

models (which are linear regressors in the meta-model) for each point pk in the training set.

Eigenvectors (also called principal components) of the scaled and non-centered X'X matrix,

as well as condition indices and variance-decomposition proportions, are computed for

individual variables (regressors in the meta-model) using the SPSS software. According to

Belsley (1991), a colinearity problem occurs when an eigenvector associated with a high

condition index contributes strongly to the variance of two or more variables. This was not

the case in our three base models bmr.

To determine if the models completed each other and the resulting meta-model was robust,

we compared its performance with the best base-model and the simple average model. The

statistics i-v presented above were used in the comparisons; the results are summarized in

Table 1.12. Both MSE and AARE+STDEV optimal meta-models outperformed the best

and the simple average models. Even the simple average model was a improvement over

the best base-model. Moreover, AARE, STDEV, MAXARE, and PCE were respectively

reduced by 13%, 20%, 23%, and 173% if the AARE+STDEV optimal meta-model was

used instead of the best base-model.

To illustrate how a meta-model achieves lower AARE and PCE than base-models, an

experimental point p was chosen. The base-models and meta-model were use to simulate an

output for a range of liquid velocity values, uL, in the vicinity of p (Figure 1.15).

56

200

300

400

500

600

700

800

900

5,0E-04 2,0E-03

u

P/
Z

(P
a/

m
)

∆

3,5E-03 5,0E-03

L

bm1 bm2 bm3 meta-model Experimental

p

Figure 1.15 The meta-model showing monotony with respect to uL and accuracy in
prediction for data point p. The base-models show either imprecision or phenomenological
inconsistence

This example shows that although the base-model bm2 predicted the pressure drop value at

point p very well, it failed one of Eqs. (1.36)-(1.40) monotonicity constraints. This would

eventually lead to the incorrect prediction of a point with lower uL. On the other hand,

although the other two models, bm1 and bm3, exhibited monotonically increasing trends,

their predictions were not as accurate, overestimating (bm1) or underestimating (bm3) the

pressure drop at point p. Conversely, the meta-model was not only very accurate near p, but

also adhered to the monotonicity constraint with respect to the liquid velocity.

Now, in the end of the dimensionless correlations chapter, we would like to give the

reader some details pertinent to the neural networks experimentation performed herein. The

estimate of the neural network accuracy may vary as a function of the partition of data in

training and generalization sets, as well as on the weight initialization (Flexer, 1994;

Prechelt, 1998). In sections 1.2.2 and 1.2.3, the error rates of models and a measure of

disagreement with the prior knowledge in terms of monotonicity were combined to guide

57

the search for good input combinations. While performing this search with the genetic

algorithm, the partition of data and the weights initialization remained fixed in both cases

(1.2.2 and 1.2.3). However, due to the inherent parallelism of the GA search, features which

were relevant could not be eliminated by chance alone just because of a poor weight

initialization. This is because the features were present in the population in a multitude of

combinations which could not fail simultaneously. Of course, once a combination of inputs

was selected (section 1.2.3), different partitionings of data and weight initializations were

performed before proposing a final model.

58

1.4 Conclusions

In this first chapter, we treated the issue of regression with neural networks whose inputs

are dimensionless groups computed from the dimensional variables: i.e., a collection of 14

physical properties and operating conditions, characterizing the three (G, L, S) phases. We

devised a genetic algorithm-based procedure for building ANN models by identifying the

most expressive dimensionless groups and their numbers, as well as appropriate network

architecture. We directed the search toward models matching the monotonicity restrictions

gathered from prior knowledge concerning the particular modeled characteristics. In a first

step, the monotonicity was tested at the edges of definition ranges for the dimensional

variables. Even though the automated GA-ANN procedure easily identified several passing

models, there was no guarantee that such behavior was representative of the whole domain.

A new measure of the monotonicity behavioral likelihood, termed Phenomenological

Consistency Error (PCE), was devised as a more significant measure. Several models were

identified matching the monotonicity rules in the vicinity of 80% of the points used for test

purposes. These models differed mostly by their inputs and network architecture. The third

part of this chapter treated the possibility of further reducing the prediction error and, more

importantly, the PCE, by exploiting the diversity of the models. Positive results were

obtained, as PCE and AARE on generalization sets were further diminished . However, 0%

could not be achieved, as the monotonicity was not imposed in the neural model, but

assessed via PCE after training. Imposing monotonicity via hard restrictions in the

functional form of the neural network model will be treated in the next chapter. This is

possible only if the dimensional variables are the inputs of the network and not

dimesionless numbers computed from from them.

59

1.5 Notation

ANNj(S) ANN having j hidden nodes and using the m-input selector S

a Interfacial area (m2)

aS External area of particle and wall per unit volume aS = aT + 4/DC (m2/m3)

aT Bed-specific surface area (m2/m3)

B Bed number φ
ε
⋅⋅

−⋅
=

CT D
B)1(6

a

BlG Gas Blake number
GT

GG
G a

u
Bl

µε
ρ

⋅−⋅
⋅

=
)1(

BlL Liquid Blake number
LT

LL
L a

uBl
µε

ρ
⋅−⋅

⋅
=

)1(

bmr Individual neural network model

C Scaling coefficient in linear conversion of criterion into fitness function

CaL Liquid Capillary number
L

LL
L

uCa
σ

µ⋅
=

C() AARE+STDEV criterion depending on β coefficients β

cc Convergence criterion in ANN learning step

DC Column diameter (m)

dh Krischer-Kast hydraulic diameter ()() 3
123)19(16 επε −⋅⋅= PVh dd (m)

60

dP Sphere diameter equivalent to the particle specific area () TP a16 ε−=d (m)

dPV Sphere diameter equivalent to the particle volume () ()TPV a16d ⋅φε−=

(m)

EoL Liquid Eotvos number
L

PL
L

dgEo
σ

ρ 2⋅⋅
=

Eo’L Modified liquid Eotvos number 2
'

TL

L
L

a
gEo

⋅
⋅

=
σ
ρ

fLGG Friction factor

FrL Liquid Froude number
P

L
L dg

uFr
⋅

=
2

FrG Gas Froude number
P

G
G dg

u
Fr

⋅
=

2

g Generation in a GA run; gravitational constant (m/s2)

GaG Gas Galileo number 2

32

G

PG
G

dg
µ

ρ ⋅⋅
=Ga

GaL Liquid Galileo number 2

32

L

PL
L

dg
µ

ρ ⋅⋅
=Ga

Ga’G Modified Gas Galileo number 32

2

TG

G
G a

g
Ga

⋅
⋅

=
µ
ρ

Ga’L Modified Liquid Galileo number 32

2

TL

L
L a

g
⋅
⋅

=
µ
ρGa

H Number of hidden nodes

Hj Activation function of the j neuron in hidden layer

61

HA Henry’s law constant(-)

Ii Input variable representing a column in the database

J Number of nodes in hidden layer

Jmax Maximum number of nodes in hidden layer

K1 Wall factor ()

1

1 13
21

−

−

+=
C

PV

D
dK

ε

K2 Wall factor

=

C

PV

D
d

K 22

K3 Wall factor

=

CC

PV

D
Z

D
d

K3

KL Overall mass transfer coefficient (m/s)

kL Liquid-side mass transfer coefficient(m/s)

kg Gas-side mass transfer coefficient(m/s)

m Number of ANN inputs selected by S

M Number of input columns in the database

MAXARE Maximum absolute relative error

MAXPOP Size of population

meta(pk) Output of the meta-model for the input point pk

MoL Liquid Morton number 3

4

LL

L
L

gMo
σρ

µ
⋅
⋅

=

MSE-OLC Mean square error optimal linear combination

62

N Number of samples in a data set

Ni Dimensionless group computed from the dimensional variables

NP Number of packings per unit bed volume (m-3)

Nw Number of connectivity weights

O Output variable of interest for a particular problem

OhL Liquid Ohnesorge number
pLL

L
L d⋅⋅

=
σρ
µ 2

Oh

P Pressure (Pa)

pk, Vector of the dimensional variables recorded at the position k in the data

base, pk = {uG,uL,ρG,µL,aT,ε ,φ,Z,DC,ρL,σL,µG}

PPC Number of phenomenological rules violated by an ANN model

Q(S) Value of criterion for S

ReG Gas Reynolds number
G

PGG
G

du
µ
ρ ⋅⋅

=Re

ReL Liquid Reynolds number
L

PLL
L

du
µ
ρ ⋅⋅

=Re

S Combination of dimensionless numbers or input selector

S Normalized output variable

SB Bed correction factor () ()ε−⋅= 1da hSBS

SB2 Bed correction factor ()()
ε

επε
−

⋅−⋅⋅=
1

/
)19(16

2
3

123
2,

ST
B

aa
S

63

SB3 Bed correction factor ()()
ε

επε
−

⋅−⋅⋅=
1

/
)19(16

2
3

123
3,

TS
B

aa
S

StL Liquid Stokes number 2
pL

LL
L dg

u
St

⋅⋅⋅
⋅

=
ρε
µ

StG Gas Stokes number 2
pG

GG
G dg

u
St

⋅⋅⋅
⋅

=
ρε
µ

St’L Modified Liquid Stokes number
g
auSt

L

TLL
L ⋅⋅

⋅⋅
=

ρε
µ 2

,

St’G Modified Gas Stokes number
g
au

St
G

TGG
G ⋅⋅

⋅⋅
=

ρε
µ 2

,

STDEV Standard deviation of ARE

() ()
()

()1NAARE
Py

PyPy
2

N
1i

k
exp

k
calc

k
exp

−

−

−
=σ ∑ =

u Phase velocity (m/s)

Ui Normalized input variable

vj Testing dimensional variable

WeL Liquid Weber number
L

PLL
L

du
σε

ρ
⋅

⋅⋅
= 2

2

We

wi,j, wj ANN connectivity weights

X The matrix whose columns are the log values of the outputs of the bmr

models for each point pk in the training set

y(calc)(pk) Dimensional pressure drop calculated from the output S for the input vector

pk

64

y(exp)(pk), y(pk) Dimensional pressure drop measured for the input vector pk

Z Bed height (m)

Greek letters

χ Lockhart-Martinelli parameter
L

G

L

G

U
U

ρ
ρ

χ =

ρ Phase density (kg/m3)

µ Phase viscosity (kg/m.s).

β Weighting coefficients vector in the meta-model

α, β Weighting coefficients in the criterion

ε Bed porosity; normally distributed, zero-mean, random variable

φ Particle sphericity factor () ()() 3
2

PTP N16aN ⋅πε−⋅π=φ

∆P Irrigated pressure drop (Pa)

σ STDEV; phase surface tension (N/m)

Abbreviations

AARE Average absolute relative error;
() ()

()∑
=

−
=

N

1k k
exp

k
calc

k
exp

Py

PyPy
N
1AARE

ANN Artificial Neural Network

ARE Absolute relative error

65

PC Phenomenological consistency

PCE Phenomenological consistency error

Subscripts and Superscripts

calc Calculated

exp Experimental

G Gas, generalization

G+T Generalization and training

GA Genetic algorithm

L Liquid

max Maximum

min Minimum

pred Predicted

66

2. Neural Network Dimensional Correlations for Continuous
Multiphase Reactors Characteristics

2.1 Bibliographical review and problematic

In this chapter we deal with the case when the inputs in a neural network model are the dimensional

variables describing the three phases. These inputs should provide information about the output

characteristic we wish to model. In this situation, the feature selection problem is less pronounced than

in dimensionless modeling. This is because in multiphase systems, the raw variables are less numerous

than the possible dimensionless groups from which they can be edited. Of course, some of these

variables might be more useful than others in predicting the characteristic of interest; however, we

shall consider that the set of features is already selected. The problem from the previous chapter then

remains:, i.e., how do we select models that not only accurately predict the data, but which also match

prior knowledge in terms of monotonicity behavior? There are not as many examples in multiphase

reactor literature of dimensional ANN correlations as there are in the dimensionless category. Larachi

et al. (1999) proposed ANN modeling of the liquid superficial velocity at transition between the trickle

and pulse flow regimes as a function of the raw variables: liquid viscosity (µL), superficial gas velocity

(vSG), gas density (ρG), volume-equivalent particle diameter (dp), and two bed parameters as:

),,,,,,(, ερσµρ pGSGLLLtrSL dvfv = (2.1)

However, the larger field of chemical engineering, as well as other fields of science, has attempted to

use monotonicity information. Recent works have emphasized the importance of a priori information

and domain-specific knowledge in neural network development. Abu-Mostafa (1993), referring to the

supplementary information about the function to be learned as hints, developed a systematic method

for incorporating this a priori knowledge in the usual learning-from-examples process. Typical hints

that were considered included invariance, monotonicity, and approximation, which were presented to

the learning process by examples. Monotonicity, however, has been studied in more recent works

considering the subject of embedding a priori knowledge in the neural network development. Wang

67

(1996) proposed an algorithm to build monotonic concave back-propagation networks by choosing as

training samples only those data points from the training set satisfying a mono-concave relationship

explicitly. In a finance application, Sill (1998) proposed a modified feed-forward neural network

trained with a gradient-based technique guaranteeing monotonicity by its functional form. In chemical

engineering applications, monotonic neural networks have been introduced by Kay and Ungar (1993,

2000). They developed monotonic multilayer feed-forward neural networks by forcing the signs of the

networks’ weights. They also showed that monotonicity information contributes to squeeze down

model confidence band, yielding more reliable models. Network training was performed using a

sequential quadratic algorithm; no second-order information was used. Second order monotonicity

information refers to the sign of the second order derivative of the modeled characteristic with respect

to an input variable, coinciding with concavity.

In the next sections we present a new method for building neural networks that are able to achieve

100% monotonicity at the first and possibly the second order. The neural network training is

performed by means of an evolutionary algorithm which combines genetic and hill climbing searches

(GA-GHC). To date, there are no reports of using genetic algorithm based search techniques for

training monotonic-concave neural networks. Furthermore, in contrast with past attempts to develop

dimensionless multiphase flow correlations, we used raw dimensional operating variables, rather than

the dimensionless groups, as network inputs. When mapping the dependent variable y (reactor

transport parameter) to the G-L-S operating (independent) variables , it is not

necessarily better to reduce the dimensionality of the input vector by creating fewer dimensionless

groups N

),...,,(21 avvv=v

),...,,(21 bNNN=i=f(v) to be used as model inputs. The dimensionless groups , b<a may

be cross-correlated (as they may contain some common dimensional variables v

N

i) which is not helpful

for learning. Also, the number of network weights required for capturing the relationship y(N) is not

necessarily less than the number needed for learning the relationship y(v). Finally, it is far more

awkward to develop mathematically guaranteed monotonic networks with respect to the dimensional

variables when the network’s inputs are dimensionless groups Ni. The proof-of-concept of embedding

monotonicity and concavity information in the training of NNs by means of genetic algorithms will be

illustrated in correlating total liquid holdup in randomly packed bed containing counter-current gas-

liquid towers.

68

2.2 Monotonic networks

The most common architecture used in function approximation is the multilayer feed-forward neural

network, depicted in Figure 2.1. It consists of I nodes in the input layer, J hidden nodes, and a single-

output node. Hidden and output layers are endowed with a nonlinear activation function, the logistic

sigmoid:

ze
z −+

=σ
1

1)((2.2)

The estimate produced by the network is computed as:

+

+⋅⋅= +

= =
+∑ ∑ 1

1 1
,1,)(J

J

j

I

i
jIjiij wwwxwy σσ) (2.3)

y)

H1 x1

wi,j wjxi Hj

xI
 HJ

 1 1

Figure 2.1 Typical feed-forward multilayer neural network used for function approximation

One classical approach for training feed-forward neural networks focuses on minimizing the sum of

squared errors ∑ of the fitting function f(x,w) on a training data set, where y
=

−
TN

i
ii yy

1

2)()
i represents the

69

true (experimental) value of y for the input pattern xi, =iŷ f(xi,w), and NT is the number of training

samples. Very often, there are too many degrees of freedom in estimating the networks weights, w,

using such a simple sum of squared errors criterion, leading thus to networks exhibiting poor

generalization ability. The training process optimizes the weights in such a way that the fitting function

f(x,w) too closely approaches some training points, which incidentally may be corrupted or noisy. This

problem, known as overfitting, may be reduced at the cost of introducing bias with some regularization

or early stopping techniques. The degrees of freedom in the training process may be drastically

reduced, and hence overfitting diminished, if the course of possible functions is narrowed to include

only monotonic functions (Kay and Ungar, 1993, 2000). This becomes possible provided the signs of

the first derivative of the function f(x,w), to be learned with respect to some particular inputs xk, are

known with certainty. If this is the case, f(x,w) may be constrained to obey that expected behavior. For

example, for non-strict increasing monotonicity:

0≥
∂
∂

kx
f (2.4)

The 1st derivative may be calculated as:

⋅

+
⋅

+
=

∂
∂ ∑

=
−

−

−

− J

j
jkb

b

ja

a

k

w
e

ew
e

e
x
f

1
,22)1()1(

 (2.5)

with

()() 1
1

+
=

+⋅= ∑ J

J

j
j wbwa σ (2.6)

() jI

I

i
jii wwxb ,1

1
, +

=

+⋅= ∑ (2.7)

A sufficient condition for satisfying Eq. (2.4) is:

70

Jjjww jkj ≤≤∀≥⋅ 1,,0, (2.8)

Training the above monotonically increasing neural networks with respect to input xk is equivalent to

solving the following optimization problem (Kay and Ungar, 1993, 2000):

Jjjwwtosubjectyy jkj

N

i
iiw

T

≤≤∀≥⋅−∑
=

1,,0)(min ,
1

2) (2.9)

To enforce concavity as well as first-order monotonicity, supplementary constraint on the second-order

derivative must be imposed: non-strict upward concavity or 02

2

≥
∂
∂

kx
f , and non-strict downward

concavity, or 02

2

≤
∂
∂

kx
f , in as much as Eq. (2.4) is verified. Second derivative is computed by

differentiating Eq. (2.5) r.h.s. Unlike monotonicity (Eq. (2.4)), it is difficult to infer network concavity

information via the signs of weights (such as Eq. (2.8)). For practical reasons, function concavity may

be judged only at particular learned sample points where monotonicity is fulfilled. However, the

problem described by Eq. (2.8) with supplementary penalties forcing to desired concavity (upward or

downward), cannot be solved with simple constrained nonlinear optimization techniques.

2.3 Reformulation of neural network training problem with
monotonicity and concavity constraints

Let us denote by m the number of network inputs for which monotonicity information is available, and

by c the number of inputs among the m ones for which concavity information is also given).(mc ≤

Monotonicity and concavity information for a particular problem can be given in a two-row and m-

column matrix referred to as MCI matrix:

concavity
tymonotonici

MCI

mk

−

−−
=

0...11
1...11

......21

71

A ‘1’ value in 1st row and kth column of MCI matrix means 0≥
∂
∂

kx
f ; similarly, ‘-1’ stands for

0≤
∂
∂

kx
f . Equivalently, a “1” value in 2nd row and kth column means 02

2

≥
∂
∂

kx
f , whereas “-1” stands for

02

2

≤
∂
∂

kx
f , and “0” for no concavity restrictions when is not supplied. No zeroes occur in the first row

of the MCI matrix because all the network’s inputs, where monotony information is unavailable, are

excluded from the list.

To obtain a neural network that closely agrees with the defined MCI matrix, we need to reformulate

the problem of the network training as the minimization of a composite criterion, which is equivalent

to a global error (GErr):

∑
=

⋅+⋅+−=
TN

i
concmonii PPyy

1

2)()(GErr βα)w (2.10)

where Pmon and Pconc are, respectively, penalty functions for monotonicity and concavity.

A natural form for the monotonicity penalty function is:

∑∑
= =

=
m

k

J

j
mon monP

1 1
)(w (2.11)

 −=⋅
=

otherwise

kMCIwwif
mon

jkj

0

)),1(sgn()sgn(1
)(

,

w (2.12)

where sgn is the sign function. In this way, we measure the degree in which a particular weight vector

w satisfies Eq. (2.10) for all k inputs. The penalty function that accounts for concavity agreement

between model and a priori knowledge is defined as:

72

>

=

∑
=

otherwiseconc

Pifc
P

c

k

mon

conc

1
)(

0

w

 (2.13)

−=

∂
∂

=
otherwise

kMCI
x

fif

conc
k

0

)),2(sgn()sgn(1

)(

2

2

w (2.14)

The role of the penalty terms is explained as follows: Pmon is evaluated through Eq. (2.11). Pmon = 0

implies that f(x, w) is monotonic with respect to all first-row inputs of the MCI matrix. It makes sense

then to turn to 2

2

kx
f

∂
∂ to compute the penalty term for concavity Pconc to discriminate, among networks,

which fulfill or violate concavity. If Pmon ≠ 0, Pconc is attributed maximum penalty value, and no

second-order derivative is computed.

Setting the appropriate values for multipliers in Eq. (2.10) is important if monotonic networks with

low SSE are to be created. These monotonic networks should also satisfy the concavity constraint.

Guidance on how to set them is based on the following heuristics:

Consider the r.h.s of Eq. (2.8) divided by the number of training samples. It would read:

conc
T

mon
T

P
N

P
N

MSE ⋅+⋅+
βα , with MSE representing the mean square prediction error.

All of these terms together are to be minimized by a genetic algorithm, which was designed to be

elitist in nature; i.e., it never drops the best solution found.

For a given problem, there always exists a multitude of weight sets w for which , so the initial

population of the optimization algorithm is formed by (randomly generated) weight sets whose signs

are set in such a way that is null. The MSE term will always be lower than 1, as both the estimate

0=monP

monP

73

iy) and the true belong to the interval [0,1]. The lowest degradation (i.e., increase with respect to

zero) of the term is 1.

iy

Pmon

P

In order to ensure that the optimization scheme will never prefer a weight set with lower MSE and

non-null , it is enough to set monP 1⋅
TN

α greater than the maximum hypothetical decrease in the MSE

term, i.e., 1 (from 1 to 0). In practice, we may choose
TN

α as equal with the MSE of the best weight

set randomly generated in the first generation of the genetic algorithm (but having 0=monP). The

value of
TN

β should be set as a fraction of the value of
TN

α in order to generate solutions with

considerably lower MSE, even if they exhibit non-null , rather than an ill-fitting solution with

. β value, such that

concP

0=conc αβ <<0 , is problem-dependent, and should be established as the

fraction of the total potential decrease in MSE sacrificed for the sake of having verified. If the

training data exhibits concavity in the sought direction, the MSE will be decreased by the genetic

algorithm (by tuning the values of weights and/or their signs) up to the point when

0

0

=concP

=concP would be

fulfilled.

The function to be optimized (Eq. (2.10)) is multimodal due to the sum of the squared-errors term

and/or the penalty terms that also induce discontinuity of the function GErr(w). There are several

methods that can be employed to optimize a multivariable function for which gradient information

may not be used. There are genetic algorithms, random search, stochastic hill climbing, particle swarm

optimization, simulated annealing, or combinations thereof (Krink and Løvbjerg, 2002). Here, the

network training being defined as a minimization problem of criterion GErr for vector w, let us

describe next the algorithm used to perform optimization.

74

2.4 Genetic algorithm - genetic hill climber optimizer

Gradient-based techniques are not suitable because of the discontinuity nature of the penalty functions

added in the training criterion. Hence, since the function to be optimized is locally similar to a classical

error surface of neural networks, it is more appropriate to use genetic algorithms (Schaffer et al., 1992;

Branke, 1995; Whitley, 1991, 1995).

Genetic algorithms (GAs), first pioneered by Holland (1975), are now among the most general

optimization methods used in science and engineering. As described by Goldberg (1989), classical

genetic algorithms applied to multivariable function optimization require first encoding the variables w

in a binary string that becomes an individual in a population that is evolved through several

generations. A first population is randomly initialized, and then the function value is calculated for

each individual among this population. The next generations are formed by means of three genetic

operators: reproduction (selection), recombination (crossover), and mutation. The reproduction

operator ensures that highly-fitted individuals will be propagated in the next generation and/or produce

offspring by crossover and mutation. The recombination operator yields two new individuals from two

parents by simply interchanging bit substrings. (The start point and length of interchanged substrings

are randomly chosen). Mutation maintains diversity within the population by altering, with a low

probability, the value of individual bits. All the implementation aspects in a computer algorithm of the

evolutionary principles affect performance, especially when the optimization problem is a neural

network training problem where the permutations problem (numerous equivalent symmetric solutions)

makes the search difficult (Whitley, 1995).

Classical genetic algorithms have not proven effective in neural networks training, and several

modifications have been suggested in the literature. To be distinguished from classical hyper-plane

sampling genetic algorithms, such search algorithms have been named genetic hill-climbers (Whitley,

1995). The first modification concerned using real-valued encoding (Branke 1995; Whitley 1991;

Whitley 1995) instead of binary encoding (Figure 2.2). This implies that recombination may occur

only between weights. Second, the role of mutation has been switched from a mere background

75

operator to a principal role during search. Finally, the population size has been lowered (e.g., 50

individuals).

wj wi,j

Figure 2.2 Real-valued string representation of a feed-forward neural network with single output node

The evolutionary algorithm designed here combines a kind of classic genetic search with genetic hill-

climbing. The idea behind this approach is to take advantage of two fundamentally different

improvement processes: gene interchange between individuals (specific to classical GAs) and hill-

climbing in attractive regions specific to stochastic hill-climbers.

Figure 2.3 Pseudo-code for the genetic algorithm-genetic hill climber optimizer

The basic steps of the proposed algorithm are depicted in Figure 2.3. A population of MAXPOP

individuals is first randomly initialized within a given range specific to the optimization problem.

Then, the reproduction operator (to be described in detail later) promotes some of the best individuals

76

in the next generation g+1. Within two of three generations, a classical GA search is performed using

classical crossover (substring interchanges of weights between two parents to yield offspring) and low

probability mutation. In one of three generations, genetic hill-climbing is performed using a high

mutation rate and an arithmetic crossover that generate two offspring by linear combination of some

parts of the parent strings.

2.4.1 Reproduction (Selection)
The purpose of this operator is to ensure that the fittest specimens perpetuate through offspring and/or

have greater chances to be found in the next generation. Numerous schemes are known which

introduce various levels of determinism into the selection process. The one we used was the stochastic

remainder selection without replacement but with elitism (Goldberg, 1989). The principle here is that

above average individuals are receiving at least one copy in the next generation, while even the

inferior individuals retain a chance to be promoted. As the criterion GErr(w) was minimized, a linear

transformation was applied to convert it into a fitness measure:

ii GErrGerrCfitness −⋅= max
* (2.15)

A linear fitness scaling was performed as described elsewhere (Goldberg, 1989) to transform this raw

fitness into functional fitness, fitnessi.

Then a survival probability was computed for each individual i of the MAXPOP population:

∑
=

= MAXPOP

i
i

i
i

fitness

fitnessp

1

 (2.16)

Using this probability, the expected number of copies of each solution i was computed:

ii pMAXPOPE ⋅= (2.17)

Each solution was then copied into the next generation Int(Ei) times, Int(Ei) being the integer part of

Ei. To complete the new population to MAXPOP individuals, the fractional remainder

77

)(iii EIntER −= (2.18)

of each solution was treated as the probability of further duplication with a weighted simulated coin

toss until the new population was balanced. As this selection is also elitist, special attention was paid

to the best g-generation individual stored and inserted in g+1 after crossover and mutation were

performed.

2.4.2 Recombination (Crossover)
In binary encoded GAs, crossover exchanges substrings from two different parents, creating two

children who inherit some of the parents’ genetic material. The classical crossover used in our

algorithms is a two-point crossover that treats the strings as a ring. It works basically the same way as

in binary encoding except that, weights, not bits, are exchanged from homologous positions.

The modified arithmetic crossover employed here is also similar to classical crossover, except that the

selected genes do not exchange places, but are linearly combined. Starting from two parents, wparent1

and wparent2, the children wchild1 and wchild2 are initialized as: wchild1= wparent1 and wchild2= wparent2. Then a

substring schild1 selected with random start point and length from wchild1 is replaced by the vector

 where s21)1(childchild tt ss ⋅−+⋅ child2 is the homologous substring in wchild2 and t is a random number

between 0 and 1. Similarly, a substring schild2 selected with random start point and length from wchild2 is

replaced by the vector (21)1 childchild tt ss ⋅+⋅− where schild1 is the homologous substring in the initial

child1. Note that if t = 0, then the arithmetic crossover degenerates to classical crossover.

The proposed modified arithmetic crossover differs from the classical arithmetic crossover described

by Krink and Løvbjerg (2002). The latter produces offspring as some linear combination of parents,

while the former linearly combines only fragments from parents. This modified arithmetic crossover is

less disruptive than the classical arithmetic crossover by letting unchanged potentially desirable parts

in individuals to propagate g to g+1.

2.4.3 Mutation
Entry l of an individual wl was mutated with a value ∆wl, a uniformly random-generated number

within a range that reduces during the generational evolution.

78

Consider the monotonic decreasing function :

)ln(
)ln()ln()(

SMAXSESSION
gSMAXSESSIONgq −

= (2.19)

in which g represents the generation attained with GA-GHC, and MAXSESSIONS is a customary

chosen maximum number of generations to explore. This function is a monotonically decreasing

logarithmic function of g and takes its maximum value 1 at the first generation (g=1) and its minimum

value of 0 at the last generation (g=MAXSESSIONS).

We used this function as an envelope for the amplitude of mutation increment ∆wl by calculating it as:

)}();({ gqwHighgqwLowrndwl ⋅⋅⋅⋅=∆ γγ (2.20)

where rnd{a;b} returns a uniformly random-generated number in the range (a,b), wLow and wHigh

are, respectively, the lower and higher limits of the interval in which wl is searched, and γ =rnd(0,1).

The γ coefficient was introduced to fluctuate the wideness of the interval from which ∆wl was

sampled, i.e., to allow a certain number of small mutations. In the above heuristics, the interval

{wLow, wHigh} was assumed symmetric with respect to 0 (as is the case for neural network weights

identification) so that ∆wl would be equally likely to be a positive or negative value. This modality of

computing mutational increment ∆wl allows function optimization in any real definition domain for the

variable vector w because it embeds information about the domain bounds.

2.4.4 Benchmarking the GA-GHC optimizer
Before applying the algorithm to our real problem (liquid holdup neural network training), we decided

to test it on some benchmark problems to assess its performance. The primary goal in adjusting the

algorithm’s parameters was to obtain enough search power to solve, with a single set of parameters,

different problems, such as function optimization and neural network training. A summary of the

characteristics and parameters of the GA-GHC optimizer is provided in Table 2.1.

79

Table 2.1 Parameters’ set of the GA-GHC optimizer used in all benchmarks and the real problem

Representation real

Selection stochastic reminder selection

Fitness scaling linear scaling

Elitist strategy single copy of the best individual preserved

Genetic operators for 2 of 3 generations: -two point crossover pc=0.5

 - low probability mutation plm =0.03

for 1 of 3 generations: -two point modified arithmetic crossover pc=0.5

 - high probability mutation phm =0.5

Population size MAXPOP = 50

Number of generations

to explore

MAXSESSION: problem dependent

Search range wLow, wHigh : problem dependent

Assessment of the GA-GHC optimizer was performed on three case studies:

• medium sized multimodal functions optimization (10-30 parameters)

• large multimodal functions optimization (100 parameters)

• neural network training (35 parameters)

The functions selected to test the solving power of the algorithm are very often encountered in

optimization algorithm benchmarks. They are named after the authors that introduced them as

benchmark functions (Table 2.2).

80

Table 2.2 Test functions

Function Search Space

Rastrigin ())AxAxxf n

i ii +⋅⋅⋅−= ∑ =1
2

1 2cos()(π 12.512.5 ≤≤− ix

Griewank () 1100cos100
4000

1)(
1

2

12 +

 −
−−= ∏∑ ==

n

i
in

i i i
xxxf

0.6000.600 ≤≤− ix

Ackley
−

⋅−⋅−+= ∑ =

n

i ix
n

exf
1

2
3

12.0exp2020)(

()

 ⋅⋅− ∑ =

n

i ix
n 1

2cos1exp π

0.300.30 ≤≤− ix

The Rastrigin function, f1, has many suboptimal peaks whose values increase as the distance from the

global optimum increases. The product term in Griewank function, f2, introduces interdependency

between the variables; this is why this function disrupts the optimization techniques working on one

variable at a time. The Ackley function, f3, is also multimodal at low resolution. The optimum of these

functions is located at (f (0,0,..0)=0).

Table 2.3 Results on test functions with medium dimensions number

Function Dimensions

(n)

Range of

initialization for all

parameters

Minimum reached

Standard GA (1)

Minimum reached

GA-GHC optimizer

Rastrigin (A=3) 20 12.512.5 ≤≤− ix 6 5.3

Griewank 10 0.6000.600 ≤≤− ix 0.1 0.081

Ackley 30 0.300.30 ≤≤− ix 1 0.024

Table 2.3 shows the average over 50 runs of the minimum function value found (best individual) for a

standard GA and for the GA-GHC optimizer after 100 000 function evaluations. The values for the

standard GA(1) were extracted (with graph precision) from Potter and De Jong (1994). In this standard

81

GA(1), the representation of parameters is binary, so the crossover exchanges bit substrings between

individuals in order to create offspring.

Other performances, referred to as standard GA(2), were recently reported (Krink and Løvbjerg, 2002)

for real parameter representation and arithmetic crossover. This time, the number of dimensions is

raised to 100 for all three functions. To make the search for the optimization algorithms more difficult,

the initial population is asymmetrically initialized with respect to the global minimum. Note also that

parameter A in the Rastrigin function is augmented from 3 to 10, rendering this function more difficult

to optimize because of the stretching of the suboptimal peak’s amplitude. Table 2.4 shows a

comparison between the performances of the GA-GHC optimizer, a standard GA(2) , and a stochastic

hill-climber (SHC) Krink and Løvbjerg, 2002. The performance measure is, as in the previous

benchmark, an average over 50 runs of the minimum function value found (best individual), but this

time, the number of function evaluations is 2 500 000.

Table 2.4 Results on test functions with large dimensions number

Function Dimensions

(n)

Initialization

range

Mimimum

reached

Standard GA(2)

Mimimum

reached

SHC

Minimum

reached

GA-GHC

Rastrigin

(A=10)
100 12.556.2 ≤≤ ix 0.539 725.8 50.94

Griewank 100
0.6000.300 ≤≤ ix

 175.2 269.9 0.022

Ackley 100 76.3238.16 ≤≤ ix 0.035 21.2 19.8

The GA-GHC optimizer performs better than the stochastic hill climber (SHC) on all three test

functions. It exhibits better performance than the standard GA(2) for the Griewank function only, while

it underperforms for the Rastrigin and Ackley functions. The standard GA(2) uses parameter sets (pc

and pm) specifically tuned for each individual problem, whereas the GA-GHC optimizer uses the same

parameter assortment for all benchmarks.

As the purpose of GA-GHC optimizer is training neural networks, a test was performed on a

benchmark neural network-training problem having neither monotony nor concavity restrictions. This

82

problem, known as the addition problem (Rumelhart, 1986), involves adding two 2-bit numbers. The

tested version had two 2-bit inputs, 4 hidden nodes, and 3 output nodes with fully connected layers.

For this problem, Whitley et al. (1989) compared the performances of their GENITOR algorithm to

GENESSIS (a classical GA(1) algorithm). GENITOR differs in two major ways from GENESSIS. The

first is the explicit use of ranking, an improved reproduction operator. Secondly, GENITOR abandons

the generational approach and reproduces new genotypes on an individual basis. The performance

measure in this case was the sum of squared errors on all three outputs of the network for the 16

patterns presented. The number of function evaluations was 100 000 in all cases. GENESSIS only

reduced error to 5.8 (averaged over 13 runs). GA-GHC optimizer performed noticeably better than

GENESSIS, reducing the error to 2.95 (averaged over 5 runs), which approaches the performance of

GENITOR, which achieved 2.48 (averaged over 5 runs).

In summary, the GA-GHC optimizer has proven to be more effective than standard GA(1) with binary

encoding. It also outperforms stochastic hill-climber, but performs moderately comparably with other

improved GAs (standard GAs(2) and GENITOR).

2.5 Methodology validation on liquid holdup modeling

After devising the GA-GHC optimization algorithm and providing the tools for designing neural

network models that agree with a priori monotonic-concave information, we tackled the real problem

of liquid holdup ANN correlation in counter-current packed beds. Recently, Piché et al. (2001e), using

a wide database (1483 measurements) of total liquid hold-up in counter-current packed beds,

developed a dimensionless neural network correlation. This correlation outperforms, in terms of

AARE (average absolute relative error) and ARE’s standard deviation (STDEV), almost all previous

empirical correlations. It is based on a feed-forward neural network, whose inputs are some

dimensionless numbers built from the dimensional variables characterizing the G-L-S system, i.e., uG,

uL, ρG, µL, aT, ε , φ, Z, DC, ρL, σL, µG. This approach’s difficulty lies in deciding which dimensionless

numbers to use as correlation’s inputs. Although the inputs selection can be done automatically with

GAs (see Chapter 1), the procedure is time-consuming and complex. More importantly, it is unable to

83

guarantee full monotonicity of the networks for the dimensional variables ∈sv

[uG,uL,ρG,µL,aT,ε ,φ,Z,DC,ρL,σL,µG] because the network inputs, xi, are functions (dimensionless

numbers, Ni) of the dimensional variables vs.(See proof in Appendix 2).

The same monotonicity rules, Eqs. (1.20)-(1.25), are used, to which we added the following two rules

regarding the concavity information:

02

2

≥
∂
∂

G

L

u
ε (2.21)

02

2

≤
∂
∂

L

L

u
ε (2.22)

All the dimensional variables that were recorded in the database and which were likely to affect liquid

holdup were considered model inputs, except for gas density, because the majority of data points

recorded in the database were at or near atmospheric pressure. For this problem, the monotonicity-

concavity-information matrix, MCI, equivalent to Eqs. (1.20)-(1.25) and (2.21)-(2.22) writes as:

−

−
=

ρσµ

000011
111111

MCI

aUU TLLLLG

To determine the best set of weights for the model εl=f(uG, uL, µL, σL, ρL, aT, ε , φ, Z, DC, µG), the

global error GErr(w) (Eq. (2.10)) was minimized. Ideally, at the end of the optimization, the penalty

terms in this criterion would reach zero. The number of hidden nodes was determined by trial and

error. It was set to J=5 yielding 66 weight parameters. The first population of the GA-GHC optimizer

was initialized in the range [-1,1], and the signs of the weights were tuned such that the monotony

penalty was null. All individuals of the first population obeyed the monotonic condition according to

the MCI matrix. A typical run of the GA-GHC optimizer on this problem is shown in Figure 2.4.

84

0

5

10

15

20

25

30

0 20000 40000 60000 80000 100000

g

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20000 40000 60000 80000 100000
g

A
A

R
E

Figure 2.4 Monotonic concave NN training with GA-GHC optimizer (α=2.5,β=1.5)

The variables monitored during the generational evolution were GErr and AARE of the best model

in generation g. The training was done on 1046 training patterns (the training set, T) which represented

70% of the whole data, while the reminder set (G) was kept to assess generalization of the trained

models. After ca. 2000 generations, the model AARE attained 15%; however, more than 80 000

generations were needed before the penalty term for the second derivative of the model with respect to

gas velocity became 0. Restarting the algorithm several times yielded similar results. The best NN

model found in the last generation explored by this approach will be referred as the εl monotonic

model.

Classical NN training algorithms may not prevent over-fitting because some data are corrupted or

noisy, the data in the input space is sparse, or the phenomenon to be modeled is complex. This is

illustrated in Figure 2.5, which compares the εl monotonic model output against the output from an NN

model trained with BFGS algorithm and early stopping. The two models used the same training data

and network configuration.

85

Table 2.5 Comparison between two correlations for liquid hold-up

Model performance or
characteristics Piché et al. (2001e)

This work

εl monotonic model

AARE T+G 13.8% 14.2%

STDEV of ARE T+G 14.6% 12.1%

AARE G 14.0% 14.2%

STDEV of ARE G 16.7% 12.2%

No weights 92 66

Max weight 39.2 9.3

Min weight -25.15 -12.5

Table 2.5 compares the performances and characteristics of the εl monotonic model to the Piché et al.

(2001e) model built on the same database. Monotonicity was 100% mathematically guaranteed over

the whole database space in the εl monotonic model, but not in the Piché et al. (2001e) model. The εl

monotonic model captured the main tendencies and avoided over-fitting the training samples by not

following misleading noisy training instances. Both AARE and STDEV (Table 2.5) were virtually the

same on generalization set (G) and all database (T+G). The fact that the εl monotonic model, obeying

Eqs. (1.20)-(1.25) and trained with the GA-GHC optimizer, performed equally well in terms of

prediction error on all data means that (i) monotonicity-concavity information imposed during training

is truly manifested within the data and is thus a posteriori proof of its correctness (ii) the GA-GHC

optimizer was robust enough to identify a suitable model.

86

b)
a)

 (µL) - (kg/m.s) σL - (N/m) ρL - (kg/m3) ε - (-) aT - (m-1) φ - (-) Z - (m) DC - (m) (µG) - (kg/m.s)

1.82E-03 3.64E-02 9.59E+02 9.77E-01 2.13E+02 7.84E-02 3.00E-01 1.55E-01 1.77E-05

Figure 2.5 Surface implemented by two ANN models a) εl monotonic model b) classically trained model. (In both cases, the same
training data and network configuration are used. The G-L-S properties for which the outputs were simulated are given in the
accompanying table.

87

Table 2.6 εl monotonic model: normalized input and output functions and the corresponding weights (Ranges of applicability in
brackets)*

()∑ =
−+

= 12

1
exp1

1

i iij
j

Uw
H

 161 6 =≤≤ Hj

()∑ =
−+

= 6

1
exp1

1

j jjHw
S

989.13 1010354.5 ⋅− ⋅×= S

Lε

×354

×≤

≥
−

−

1

3

10219.5

10.5

L

L

ε

ε

293.3
10716.1

log 3

1

×=
−

Gu

U
612.2

10859.1
log 4

2

×=
−

Lu

U
2

4

3 10913.4
10720.8
−

−

×
×−

= LU µ
1

2

4 10629.4
10410.2
−

−

×
×−

= LU σ
3

2

5 10555.9
10154.8

×
×−

= LU ρ

1

1

6 10670.4
10130.5

−

−

×
×−

=
εU

2

1

7 10600.8
10500.7

×
×−

= TaU
1

2

8 10730.5
10700.6

−

−

×
×−

=
φU

900.2
10000.3 1

9

−×−
=

ZU
1

2

10 10560.9
10400.4
−

−

×
×−

= CDU

5

5

11 10617.1
10680.1
−

−

×
×−

= GU µ 112 =U

 ×≤

×≥ −

0

3

10365.3

10716.1

G

G

u

u

×≤

×≥
−

−

2

4

10616.7

10859.1

L

L

u

u

×≤

×≥
−

−

2

4

10000.5

10720.8

L

L

µ

µ

×≤

×≥
−

−

1

2

10870.4

10410.2

L

L

σ

σ

×≤

×≥
4

2

10037.1

10154.8

L

L

ρ

ρ

×≤

×≥
−

−

1

1

10800.9
10130.5

ε

ε

×≤

×≥
2

1

10350.9

10500.7

T

T

a

a

×≤

×≥
−

−

1

2

10400.6
10700.6

φ

φ

×≤

×≥ −

0

1

10200.3
10000.3

Z
Z

×≤

×≥ −

0

2

10000.1

10400.4

C

C

D

D

×≤

×≥
−

−

5

5

10297.3

10680.1

G

G

µ

µ

wij 1 2 3 4 5
1 1.445E-01 2.353E-06 -1.638E-04 -4.893E-01
2 4.104E-07 1.608E+00 1.462E-04 -3.667E+00 -5.698E+00
3 1.443E-02 1.031E+00 1.594E-04 -3.653E-01 -4.760E+00
4 1.482E-05 1.885E-04 5.377E-01 -2.250E+00 -3.813E-03
5 -8.727E+00 -2.128E+00 -5.440E-03 3.941E-04 3.382E+00
6 -6.724E-01 6.752E-01 -3.026E+00 2.786E-01 9.740E-01
7 9.128E-07 1.237E+00 7.317E+00 -1.061E+00 -9.538E+00
8 -3.481E+00 2.539E+00 4.182E+00 1.948E+00 3.483E+00
9 -4.268E+00 -2.602E+00 9.403E+00 -3.319E+00 1.622E-01

10 2.750E+00 -3.817E-01 7.484E+00 1.677E+00 -4.596E-01
11 -5.130E+00 6.033E+00 -1.743E+00 1.085E+00 -1.249E+01
12 -4.356E+00

-1.768E+00 -2.901E+00 3.331E+00 -7.038E-01

wj 1 2 3 4 5 6
 9.581E+00 2.980E+00 1.394E+00 -3.117E+00 -5.637E+00 -5.618E-01

*A “user-friendly” spreadsheet of the neural correlation is accessible at: http://www.gch.ulaval.ca/∼grandjean or http://www.gch.ulaval.ca/∼flarachi

4.394E+00

http://www.gch.ulaval.ca/grandjea
http://www.gch.ulaval.ca/flarachi

88

In terms of AARE, the models performed equally (~14%), whereas in terms of ARE dispersion, the εl

monotonic model performed better. The improvement in ARE dispersion was much more important on

the generalization data set on which the real performance of the model should be judged (Flexer,

1994).

There were fewer weights in the εl monotonic model: 66 vs. 92 (Table 2.5). The absolute values of

maximum and minimum weights were good indicators of the model’s capacity to produce smooth

trends. Smooth output is assured by small weights.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

0 0,5 1 1,5 2 2,5 3 3,5

uL

L
iq

ui
d

H
ol

du
p

g=10 000
g=80 000
g=200 000

UG - (m/s) UL - (m/s) (µL) - (kg/m.s) σL - (N/m) ρL - (kg/m3)
1.32E+00 2.00E-03 1.82E-03 3.64E-02 9.59E+02

ε - (-) aT - (m-1) φ - (-) Z - (m) DC - (m) (µG) - (kg/m.s)
9.77E-01 2.13E+02 7.84E-02 3.00E-01 1.55E-01 1.77E-05

Figure 2.6 Evolution of model’s concavity with respect to gas velocity during training. The G-L-S
properties for which the outputs were simulated are presented in the accompanying table.

89

Figure 2.6 shows how model concavity with respect to gas superficial velocity evolved during the

training cycles. Though an acceptable prediction error for the model was achieved in the early stages, a

positive second order derivative of the liquid holdup model with respect to gas velocity was obtained

only after 80000 generations. In fact, the sign of this derivative constitutes not only a

phenomenological consistency proof, but is also an under-fitting detector.

Table 2.6 contains the ANN normalized input and output functions and the corresponding weights and

ranges of applicability of the liquid holdup correlation. A downloadable simulator is available at the

following web addresses: http://www.gch.ulaval.ca/∼grandjean or http://www.gch.ulaval.ca/∼flarachi.

A standalone Java application implementing the algorithm is also available. Details on the software we

developed are given in Appendix 3.

2. 6 Conclusion

A methodology to build neural network models which fulfill a priori information on monotonicity and

concavity of the function to be learned was developed and presented in this chapter. The relevance of

this approach was threefold:

(i) Accurate ANN models may be obtained by directly using the dimensional variables as network’s

inputs, suppressing the complication with the selection of the fittest dimensionless numbers.

ii) The network training was performed with a genetic algorithm-genetic hill-climber optimizer,

designed to direct the search toward monotonic and concave ANN models in agreement with

prescribed knowledge.

(iii) A robust correlation having phenomenological consistency in the entire database was issued for

the prediction of liquid hold-up in counter current packed beds.

This chapter presented several original elements. Firstly, second order information (concavity) was

added in addition to the monotonicity information. Furthermore, the training of the network was

http://www.gch.ulaval.ca/grandjea
http://www.gch.ulaval.ca/flarachi

90

performed with an evolutionary algorithm with two new design elements. One of these elements was

the modified arithmetic crossover; the second one was generational switch between a genetic like

search and a hill climbing type search. A contribution per-se was the result obtained: the mono-

concave liquid holdup prediction model.

2.7 Notation

aT Bed specific surface area (m2/m3)

c Number of inputs for which concavity information is available

conc(w) Concavity function for the network represented by w

C Scaling coefficient in linear conversion of GErr into fitness

DC Column diameter

Ei Expected number of copies of the specimen i

f(x,w) Neural network function

fitnessi Functional fitness value for the individual i

fitness*
i Raw fitness value for the individual i

g Generation in a GA-GHC run

Gerr(w) Global error function minimized by the GA-GHC

Hj Activation function of the j’s neuron in hidden layer

I Number of inputs in the network

J Number of nodes in the hidden layer

m Number of inputs for which monotonicity information is supplied

mon(w) Monotonicity function for the network represented by w

91

MAXPOP Size of population

MAXSESSIONS Number of generations to explore

N Vector whose elements are dimensionless groups

Ni Dimensionless group computed from the dimensional variables v

NT Number of pairs (xi,yi) in the training set

pSi Probability of a particular solution i’s survival

pc Crossover probability

plm, phm Low, respectively high, probability mutation rates

Pmon, Pconc Penalty functions for monotonicity and concavity respectively

Ri Remainder of the expected number of copies of an individual i

t Uniform random number between 0 and 1

u Phase velocity (m/s)

vi Dimensional variable describing the properties of the G-L-S system

wi,j Connectivity weight between the input i and hidden unit j

wj Connectivity weight between the hidden unit j and the output unit

w String representation of all connectivity weights wi,j, wj

wLow, wHigh Minimum and maximum values for weights initialization

xi ith input vector

xi ith component of a particular input vector

ŷ (xi) Estimate produced by the network for input sample xi

yi True experimental value for input sample xi

Z Bed height

Greek letters

92

α, β Weighting coefficients in global error function

∆wl Increment to be added to the lth element of the weight string w

ε Bed porosity

µ Phase viscosity (kg/m.s)

ρ Phase density (kg/m3)

σ Phase surface tension (N/m)

σ(z) Logistic sigmoid function

Abbreviations

ARE Absolute relative error

AARE Average absolute relative error

NN Neural network

G Gas, generalization

GA Genetic algorithm

GHC Genetic hill climber

G+T Generalization and training

L Liquid

MCI Monotonicity-concavity information

PC Phenomenological Consistence Ù matching prior knowledge

PK Prior Knowledge

S Solid

STDEV Standard deviation of ARE

T Training

93

3. Data classification in multiphase reactors

The first two chapters dealt with the prediction of continuous characteristics. In such cases, the output

of the ANN directly approximated (a normalized form of) the characteristic we wanted to predict

based on knowledge of the input variables. In this chapter the focus is on situations in which the

characteristic to model is categorical; i.e., it might take a finite number of discrete values. In this case

the neural network is designed to approximate the probability of each occurring class, given a

particular observed realization of the input vector (posterior probability).

As in the problems of regression, the methodological study was made on some concrete multiphase

reactors data sets that we had at our disposal. More specifically, the case studies here are the flow

regime classification in trickle bed reactors and the bed initial expansion or contraction in three-phase

fluidized beds. In addition to these data sets, other publicly available real data sets or simulated data

sets were analyzed. The three primary problematics remain: feature selection, inclusion of prior

knowledge, and model design. However, there are some differences in the way these key aspects of

modeling are addressed. First, some statistical approaches are considered along with the neural

networks. Their use is twofold: i) to help identify relevant features for the classification problem, as

they may be lighter in terms of computation required, ii) to give a comparison basis for the neural

network approaches. Second, we consider only the dimensional approach; i.e., the features used in the

models are the original, untransformed, but scaled variables. Even though these features are less

numerous than the possible dimensionless groups from which they can be built, we are still concerned

with the feature selection problematic. This problematic is viewed from the statistical pattern

recognition point of view, rather than the neural networks perspective. Third, the feature selection step

is treated separately from the remaining two problematics, i.e., model design with prior knowledge

incorporation. We first determine the most relevant features for predicting the class variable using

different relevance criteria, and then search for an accurate, robust classification model.

The material in this chapter is divided into two sections. The relevant bibliographical review will be

made for each section respectively.

94

3.1 Feature selection methods for multiphase reactors data classification

3.1.1 Bibliographical review
Chemical reactor engineering faces the challenging task of extracting knowledge from data, which

increasingly becomes more available and accurate. The goal for researchers and engineers is to

anticipate and predict the behavior of complex systems such as the multiphase reactors, which still

challenge the current physically-based first-principles approaches (Dudukovic et al., 2002). One

problem often encountered is accurately identifying the state of a particular system, given prior

information in the form of measurable observations. When the state to be predicted takes the form of a

categorical variable, the problem is known as a classification problem.

In spite of several decades of research in the area of pattern recognition dealing with the general

classification issue, a general purpose machine pattern recognizer remains undesigned. Provided

enough data samples are available, this process splits into two steps: feature selection, followed by

classifier design. The first refers to the task of selecting, from among all the candidates, a limited

number of features (or variables) which are the most relevant to the classification task. The second

refers to the choice and design of a particular inference engine (classifier) than can learn from data and

make reliable predictions in new situations. Feature selection is critical in reducing classifier

complexity and cost and improving model accuracy, visualization, and comprehensibility of induced

concepts.

Suppose that n examples (or instances) ωk, k = 1…n, represented by the input vector xp(ωk) =

(xk,1,xk,2,…,xk,p) and the label of class y(ωk), are available. (Here y = 1, 2…Nc , are particular values of

the generic class variable denoted Y, Nc being the number of classes). Using this dataset, we may want

to design a classifier able to assign the correct class label y for a new instance ω’. Prior to design, a

feature selection step is required, as we do not know a priori which among the p available features are

important in the classification. Selecting only a reduced number d of features among all p, d<p, is

attractive because the classifier performance depends on the interrelationship between the sample size

n used for learning, the number of features d, and the classifier complexity (Jain et al., 2000). As

95

discussed by Bishop (1995), the number of learning samples needs to be an exponential function of the

feature dimension, so there is an obvious interest in keeping d as low as possible.

Selection of a good feature subset may be of little interest when the number of training samples is

sufficiently large and representative (or equivalently, when the class-conditional probability density

functions are fully known). In this case, the probability of misclassification does not increase as the

number of features increases (Sebban et al., 2002). In practice, however, added features can degrade

the classifier performance when n is relatively small with respect to the number of features. This

behavior, known as peaking, occurs when for a given sample size (n), supplementary features increase

the number of classifier parameters, thereby reducing classifier reliability (Jain et al., 2000). In these

instances, low-dimensional pattern representations are more advantageous in terms of cost and

accuracy. Notwithstanding, excessive reductions in the number of features can alter classifier

discrimination power and inflate inaccuracy.

Feature extraction and feature selection are the two main methodologies used in dimensionality

reduction. The former refers to algorithms generating a reduced number of new features based on

transformations of original features, e.g., principal component analysis. The resulting variables usually

lack physical sense and are thus not easily interpretable. Feature selection algorithms, on the contrary,

target the best d-subset among the available p features without features alteration. For this reason, this

is this category of algorithms explored in this multiphase reactor classification problems study.

There exist two generic approaches for feature selection, termed by John et al. (1994) as filter and

wrapper techniques. Filter model, through statistical techniques, are indicative of the accuracy of

potentially induced classifiers. They “filter out” irrelevant features before the induction process, and

are usually fast (absence of training). A common quality criterion in filter models is the Shannon’s

mutual information, I(Y|Xs), which measures the information provided by Xs on the class variable Y

(see Shannon and Weaver, 1949; Ash, 1990). In wrapper model, good subsets Xs are searched using

the induction algorithm itself where the accuracy rate (AR), estimated by holdout, cross-validation, or

bootstrap, is to be maximized. Here, more CPU time is needed, and the solution depends on the

particular classifier.

Once an appropriate relevance criterion J is defined, the problem of feature selection can be

formulated as follows: given a set of p features, select a subset of size d that maximizes J.

96

The simplest approach is to examine all possible combinations and choose that with the largest J

value. But even for moderate p and d values, such an exhaustive search may become impractical. Most

currently used methods evaluate only a fraction of combinations, providing speed, but not

guaranteeing optimality of solution. A second simple method would be to select the best d individual

features as an approximate solution to the feature selection problem. Using the mutual information

criterion, Batitti (1994) selected the inputs for a neural network classifier. Inter-feature mutual

information was considered for selecting features both informative about the class Y and relatively

independent of each other.

d
pC

Most current feature selection algorithms are sequential methods. The sequential forward selection

(SFS) is an example. With SFS, the best single feature is first selected. Then, an extra feature is added

which, combined with the already selected features, maximizes criterion J. SFS, in conjunction with

the mutual information criterion, was implemented by Sridhar et al. (1998) to select inputs for neural

networks in functions approximation. The main distinction here with respect to the work of Batitti

(1994) was the possibility of identifying jointly important features, albeit at the expense of a

supplementary computation overhead.

The heuristic basis of most sequential feature selection algorithms is the assumption that the criterion J

is monotonic; i.e., any change in feature set size (and therefore feature set information content) is

positively correlated with the change in J. If this is true when J is the mutual information, it is not

always the case with other criteria, such as the accuracy rate AR (or its complement, the prediction

error) (Pudil et al., 1994). In this case, sequential selection methods with backtracking such as the

“plus-l-take-away-r” (or (l,r) search) method (Stearns, 1976) or its improved version, the sequential

floating forward selection (SFFS) (Pudil et al., 1994), are more suitable. These methods first enlarge

the feature subset by l features using SFS, and then delete r of them one by one. The feature withdrawn

at each step is that which causes the smallest decrease in J. Though computationally more demanding

than SFS (because more combinations are being evaluated), such methods are more efficient in

conjunction with non-monotonic criteria (Pudil et al., 1994).

The single “optimal” technique (optimal only if J is monotonic) is based on the Branch and Bound

algorithm (Narendra and Fukunaga, 1977), which avoids an exhaustive search by using intermediate

results for obtaining bounds on the final criterion value. Because this algorithm involves evaluating a

97

quantity of possibilities that is still an exponential function of the number of variables (p), and because

the monotonicity criterion does not hold here, the Branch and Bound was not considered in this study.

Other feature search methods, such as those based on genetic algorithms (GA), have been proposed for

classification (see Siedlecki and Sklansky, 1988).

An alternative method for determining the most important features for a classification task is the

Garson method (1991) of interpreting the weights of neural networks. In this method, a feed-forward

neural network is trained to learn the mapping Y(Xs). Then a saliency index for each input of the

network is computed. This index is calculated by assessing the share of weights associated with each.

This method was experimentally evaluated by Nath et al. (1997), who concluded that the method had

potential merit.

3.1.2 Study objective and organization
The objective of section 3.1 is to examine the extension of feature selection algorithms in two

classification problems relevant to the field of multiphase reactor engineering: flow regime assignment

in trickle-bed reactors (LIR, TR, and HIR) and identification of bed initial expansion/contraction (IBE,

IBC) in three-phase fluidized-bed reactors. The ability of these methods to provide good solutions

(elite subsets Xs) that agree with each other was investigated on two benchmark problems: a synthetic

problem and the Anderson’s iris data classification problem. For these two cases, a priori knowledge

of the relevance of the features was available. Furthermore, a new feature selection algorithm which

mixes filter and wrapper algorithms was devised.

 Table 3.1 summarizes the four methods (M-I through M-IV) tested in this work, in order to identify

the subset Xs (of size d), instead of the whole feature subset Xp, to be used in classification. The

method of Garson (1991), referred to as M-V method, is not shown because it shares nothing in

common with this classification of methods M-I to M-IV, except perhaps the fact that it needs training

of the classifier (common to wrappers).

98

Table 3.1 Feature selection strategies

 Criterion to
 maximize (J)

 Selection
 method

Mutual information
(information theory)

J=I(Y|Xs)

Accuracy rate of a
 1-NN classifier

AR(1-NN)

I(Y|Xs) and AR(1-NN)

Sequential Forward
Selection (SFS)

Yes (M-I)
(filter method)

Yes (M-II)
(wrapper method)

plus-l-take-away-r

No (Not necessarily
justified, as J is

monotonic)
Yes (M-III)

(wrapper method)

Yes (M-IV)
SFS with I(Y|Xs)

continued by
(l,r) search with AR(1-NN)

(filter-wrapper method)

A “Yes” entry in Table 3.1 means that the selection algorithm specified by the row header in

conjunction with the criterion specified by the column header is tested.

The classifier used to assess the importance of sets in methods M-II to M-IV is the one-nearest

neighbor (1-NN) classifier. Its performance is evaluated by five-fold cross validation. Inherent details

unfold in the following sections. A further extension of this work would be to build simple, reliable,

and interpretable classifiers using as input variables the solutions Xs found within this study. We could

provide a new brand of design tools as an alternative to the existing first-principle based models that

are still unsatisfactory. This constitutes the scope of the section 3.2.

3.1.3 Relevance assessment
A feature selection algorithm decides to retain or drop features based on their relevance. There are

several definitions of relevance, each addressing the question “relevant to what?” (e.g. John et al.,

1994). Here, the relevance of a feature subset Xs in predicting the class variable Y is judged using three

measures:

a) Mutual information I(Y|Xs) between the feature vector Xs and the class variable to be predicted Y

99

b) Accuracy rate of a 1-NN classifier AR(1-NN) that uses Xs as discriminatory features

c) The saliency index of Garson (1991).

Note that the a) and b) relevance measures, in conjunction with a selection algorithm such as SFS or

(l,r) search, identify the d-subset Xs to use for predicting class membership without sacrificing the

discrimination power involving all p features. The Garson’s saliency index, on the other hand, judges

only the relevancy of each feature if the whole Xp set is used as a neural net input. This mostly

provides a relevance order for all features in Xp, i.e., features-ranking rather than indications on which

Xs subset is the most pertinent for classification.

3.1.3.1 Mutual information

Recall first that the records ωk have an input vector, from which is selected a features subset

xs(ωk)=(xk,1,xk,2,…,xk,d) of cardinality d, and a (class membership) label y(ωk). A classifier that uses Xs

to predict the class Y decreases its initial uncertainty by using the information in the features of Xs.

Due to insufficient input information or sub-optimal operation of the classifier, the uncertainty about

the class cannot be decreased to zero. Shannon’s information theory (Shannon and Weaver, 1949; Ash,

1990) gives a suitable formula for quantifying these concepts.

If the probability that the class variable Y takes a particular value y is denoted with P(y), y=1,2…Nc,

the initial uncertainty in the output class variable is given by the entropy:

)(log)()(
1

yPyPYH
Nc

y
∑

=

⋅−= (3.1)

Practically, the probability P(y) can be estimated using the occurrence frequency of y:

n
n

yP y=)((3.2)

where ny is the number of occurrences of y, and n is the total number of samples.

The entropy of the features vector Xs can be similarly estimated. Since features are continuous

variables, the sum is replaced by an integral:

100

ssss dPPH XXXX)(log)()(∫ ⋅−= (3.3)

The simplest way to estimate P(Xs) is by using histograms. First, each feature Xs, among all d

constituting Xs, is discretized into a large number of intervals, nbx. For simplicity, the same number of

intervals is used for each feature. The hypercubes with the volume dV dsss dXdXdX ,2,1, ...××= are

called bins. Bins construction is exemplified in Figure 3.1 for a 2-D set of features.

1,sdX

2,sdX

Xs,2

Xs,1

Figure 3.1 Bins construction: Suppose a 2-feature vector Xs. Here a bin is the volume
. 2,1, ss dXdXdV ×=

Consider now each of the nbxd bins, and count how many samples, among all n, fall into each bin. For

all bins, b=1... nbxd probabilities
n
nP b

bs =⊂)(X (nb = number of samples falling in bin b) of Xs

occurring in a particular bin b are evaluated. The entropy H(Xs) is computed using a discretized form

of Eq. (3.3):

) (3.4) (log)()(
1

bs

nbx

b
bss PPH

d

⊂
=

⊂∑ ⋅−= XXX

The average uncertainty on Y after knowing the feature vector Xs with d components is the conditional

entropy :)|(sYH X

101

)(),()|(sss HYHYH XXX −= (3.5)

where is the joint entropy estimated using a similar box counting procedure:),(YH sX

),(log),(),(
1 1

yPyPYH bs

nbx

b

N

y
bss

d
c

⊂
= =

⊂∑∑ ⋅−= xXX (3.6)

in which is the joint probability that X),(yP bs ⊂X s belongs to bin b and Y takes the value y.

By definition, the amount by which the uncertainty is decreased is the mutual information I(Y|Xs)

between variables Y and Xs (Batitti, 1994):

)|()()|(ss YHYHYI XX −= (3.7)

This function, symmetric with respect to Y and Xs, can be reduced to:

∑∫
= ⋅

==
cN

y
s

s

s
sss d

PYP
YPYPYIYI

1)()(
),(log),()|()|(X

X
XXXX (3.8)

The uncertainty H(Y,Xs) in the combined events (Y,Xs) is usually less than the sum of the individual

uncertainties H(Y) and H(Xs). Using Eqs. (3.7) and (3.5), one obtains a symmetric function:

),()()()|(sss YHHYHYI XXX −+= (3.9)

In function approximations, Sridhar et al. (1998) derived an asymmetric dependency coefficient by

dividing Eq. (3.9) r.h.s. by H(Y). We adopted this normalization here. In these circumstances

 means that X0)|(=sYI X s contains no useful information about the class Y, whereas 1)|(=sYI X

)|(sYI X

)|(sYI X

means that Y is completely predictable if Xs is known. In practice, however, the value of also

depends on grid coarseness (or number of bins). Coarser grids probably inflate inaccuracy of

because important functional variations might be overlooked, while finer grids often overestimate

 by counting noise as meaningful functional variation.)|(sYI X

102

3.1.3.2 1-NN classifier accuracy rate
The nearest neighbor classifier is one of the simplest methods used to perform non-parametric general-

purpose classification. Proven to give accurate results on many pattern recognition problems (Jain et

al., 2000), it can be represented by the following decision rule: assign a new pattern to the class of its

nearest example in the training set as measured by a metric (usually Euclidian) distance. The

Euclidian distance between two points a and b is simply:

()∑
=

−=−=
d

i
iiE bad

1

2),(baba (3.10)

As it requires no training, the nearest neighbor classifier was used in this study to assess the capability

of a subset Xs drawn from the larger Xp set to predict the class Y.

One method used to estimate the accuracy rate AR of a classifier is to compute its confusion matrix on

several z-fold cross-validation sets (Kohavi, 1995 for cross-validation issues). Consider a set A of

records ωk, k=1...n, available for the classification task. Each record ωk is represented by the feature

vector xs(ωk) and label y(ωk). Let set A be partitioned in say z = 5 folds. Each fold, once per time, is set

aside as a test set, while the ensemble of remaining z-1 sets are taken as training set. For each test set,

the confusion matrix of size (Nc×Nc) synthesizes the predictions of the classifier in the form:

.

edicted

Actual

Pr

9055
157510
101080

For illustration here, a three-class classification problem in which there were 100 samples in each class

in the test set was considered. Each cell of the confusion matrix indicated how many of the 100

samples were assigned to class y, labeled column-wise. The actual (true) class index is indicated by

row. Note that the sum over each row is equal to 100. For convenience, each element in a row of the

confusion matrix can be normalized by the number of samples in the class indicated by the row’s

index. As there are z test sets, we computed the mean confusion matrix, as well as the standard

deviation, over the z sets. The elements lying along the main diagonal of the confusion matrix provided

the per-class accuracy rate. Their averaged value is the global accuracy rate AR of the classifier.

103

3.1.3.3 Garson’s saliency index
The third criterion to be implemented was the saliency index Sind (Garson, 1991), which determines the

importance of the candidate features by interpreting the weights of feed-forward neural networks

(Figure 3.2) trained with back-propagation algorithms (Rumelhart et al., 1986). The Garson method

determines which input nodes (and thus features) are responsible for most of the output changes.

Figure 3.2 Feed-forward neural network used for classification involving Nc classes

All the features in the set Xp are fed into the network by the input nodes, which preprocess the data by

normalizing it to the [0,1] interval. The J hidden units perform a nonlinear projection of the feature

space, and the output layer decides into which class a particular input point is assigned. The number of

output nodes equals the number of classes. For a 2-class problem, a single network output suffices.

The parameters w[i,j] and w[j,k] on the inter-layer connections are the network weights. Network

training is meant to optimize such weights in a way that when a particular record ω, belonging to the

class k, is presented as input, the network output vector [O1,O2,…ONc] shows (nearly) zero elements

except for the kth component which will be 1 (or near to).

Saliency Sind(i,k) of input i with respect to output k is estimated as follows: First, each hidden-to output

weight w[j,k] is incorporated into the input-to hidden weights w[i,j]. Then, for each input variable, a

summation is made over all hidden units and converted into a percentage of the total for all input

nodes:

104

∑∑
∑

∑
∑

= =

=

=

=

×

×

=

p

i

J

j
p

i

J

j
p

i
ind

w[j,k]
w[i,j]

w[i,j]

w[j,k]
w[i,j]

w[i,j]

ki

1 1

1

1

1),(S (3.11)

where i=1,2,…, p input variables; j=1, 2,…J sweeps the hidden nodes and |.| means absolute value.

In Garson’s work, however, situations in which there are more than two classes (and thus more than

one output node) were not treated. We proposed, therefore, to generalize the Eq. (3.11) to cases where

there were Nc classes. We computed therefore, an overall saliency Sind(i) for each input node and

multiple-output neural networks (k=1, 2, …, Nc) as:

∑
=

⋅=
cN

k
indcind k)(iS/N(i)S

1
,1 (3.12)

The logic behind Eq. (3.12) is that the importance of an input variable should be judged by its impact

on the whole output layer.

3.1.4 Feature selection methods
Let us now present the methods for solving the following feature selection problem:

Given a set Xp of p features, select subset Xs of size d, pd ≤ , that maximizes the relevance criterion J.

Of techniques introduced in the beginning of section 3.1.1, we shall focus only on the class of

sequential methods: sequential forward selection (SFS), sequential backward selection (SBS), and (l,r)

method that were effectively implemented in this work.

SFS and SBS are step-optimal because only the best feature is always added. A limitation inherent to

these two methods is their inability with the nested feature combinations to correct decisions in later

steps, creating therefore sub-optimal subsets with lower J. Stearns (1976) combined SFS and SBS to

105

avoid the nesting effect, bringing thus a net improvement to the sequential methods. This combined

method, referred to as (l,r) method, repeatedly applies SFS l times, followed by r SBS steps, until the

required number of features is reached. The (l,r)-search algorithm, or its particular cases (1,0)-search

(or SFS) and (0,1)-search (or SBS), as described by Pudil et al. (1994), is detailed in Appendix 4. The

termination criterion (Appendix 4) is based on a priori knowledge of d, i.e., size of best subset. As in

our problems, p is not large, so termination is set for d = p. The best subset is retained according

to either modality: a) mutual information based criterion J: d is chosen which yields

ds,X

ζ≤−)(,dsJ X1 ,

with ζ a very close to zero threshold value; b) AR (1-NN) based criterion J: d is chosen as

.)(max ,isi
Jd X= arg

The (l,r) method was further improved by automatically tuning l and r values by Pudil et al. (1994).

Their so-called sequential floating forward selection (SFFS) consists in applying a number of

backward steps after each forward step, provided the resulting subsets are better than the previously

evaluated ones for the same size d. Using the mutual information as relevance criterion, SFS promises

 will always increase through adding supplementary features. This relevance criterion,

combined with SFS, has been used to identify neural net inputs (Sridhar et al., 1998), albeit not in

classification problems. Earlier work sketching the use of to select inputs for neural network

classifiers used mutual information between the individual features X

)|(sYI X

)|(sYI X

s,i and the class Y, to assess the

relevance of the whole subset Xs (Battiti, 1994). However, that approach did not promote jointly

relevant variables as we have here.

Conversely, if AR(1-NN), which is a non-monotonic criterion, is used as a relevance measure, the (l,r)

search is more appropriate, since it is able to reconsider previous decisions. The use of

enabled us to find the subset X

)|(sYI X

s that yielded about the same information about the class Y as the entire

set Xp. But is a statistical measure of the general dependency between X)|(sYI X s and Y, and not the

classifier accuracy itself. Therefore, it does not guarantee that the resulting Xs will actually be

paralleled by the best accuracy rate of the1-NN classifier. However, the mutual information filter

criterion is faster in execution than a classifier training session because it does not require iterative

computation on the dataset.

106

As evaluates the intrinsic properties of the data, rather than interactions with a particular

classifier, the result should exhibit more generality; i.e., the solution will be “good” for several types of

classifiers. On the contrary, using AR(1-NN) relevance criterion is more computationally intensive and

rests on the capability of this particular classifier to exploit those features in the classification task.

However, the wrapper criteria possess a mechanism to avoid overfitting; they also generally achieve

better recognition rates than do filters, since they are tuned to the specific interactions between the

classifier and the dataset.

)|(sYI X

Hence, M-IV method (Table 3.1) was devised as an alternative in this work. It first selects an initial set

of predictive features Xs,initial identified by SFS in conjunction with . The M-IV method then

“grows up” and “prunes down” this set with a (l,r) search in conjunction with AR(1-NN). First This

method is faster than launching an (l,r) search in conjunction with AR(1-NN) starting with an empty

set. This is because is easier to compute than AR(1-NN) and because SFS is more rapid than

an (l,r) search. The further adjustments of the resulting selection X

)|(sYI X

)|(sYI X

s,initial allow deletion or addition of

some features which appear to be respectively less or more important for the nearest neighbor

classification rule.

3.1.5 Problems and datasets description
The four problems tested are presented next to i) compare the feature selection methods (M-I to M-IV)

and judge their efficiency to identify the relevant features ii) identify the most predictive variables in a

couple of actual multiphase reactor problems, namely flow regime classification in trickle beds and

initial bed expansion/contraction classification in three-phase fluidized beds.

3.1.5.1 Synthetic problem
A synthetic domain problem, in which the correct answer is known a priori, was built. The setup is:

Generate three sets of 100 10-dimensional data points. In each set, the ten variables are random

normally distributed. The mean for each feature in each class (c1 to c3) was set as shown in Table 3.2

107

Table 3.2 Candidate features in a synthetic problem

Var
No.

Mean for
class c1

Mean for
class c2

Mean for
class c3

Relevance
rank

1 3 0 -3 1
2 4 0 0 2
3 0 0 4 2
4 1 0 0 3
5 0 0 1 3
6 1 0 1 3
7 0 0 0 4 –irrelevant
8 0 0 0 4 –irrelevant
9 0 0 0 4 –irrelevant

10 0 0 0 4 –irrelevant

The single most relevant variable is 1, as the average interclass distance between the central points of

the normal distributions was the largest for this variable. The two most important features are 1 and 3

(according to the same class separability measure), and the best three features are {1,3,2}. The

variables 4, 5, 6 were equally important to the classification task but are far less important than the

previous variables. Features 7-10 are irrelevant to the classification task, as they are normally

distributed random variables with the same 0 central value for each class. This problem was considered

only for benchmarking purposes. We expect that the features {1,3,2} will successfully be identified by

the feature selection methods M-I to M-V. A similar setup was used by Nath et al. (1997) to evaluate

the efficacy of Garson’s method when ranking features in a classification problem. However, the setup

we chose here is more realistic, as we introduced redundant features in the set, and the overlap

between classes was higher.

3.1.5.2 Anderson’s iris data
Anderson (1935) famous iris data is a collection of 150 4-dimensional data points, each falling into

one of the three classes: Setossa (Se), Versicolor (Ve), or Virginica (Vi). In each class there are 50

data points. The independent variables considered as candidates are shown in Table 3.3

108

Table 3.3 Candidate features for the iris data classification

No
Variable

Name Symbol max min
1 Sepal Length SL 7.9 4.3
2 Sepal Width SW 4.4 2
3 Petal Length PL 6.9 1
4 Petal Width PW 2.5 0.1

The class Se is easily separable from the other two, which are overlapping classes. Features 3 and 4

can jointly play the roles of features 1 and 2, as shown by Li et al. (2002). Using a neuro-fuzzy

classifier, they were able to classify data and simultaneously reveal its important features. For this

classifier, only the features {3,4} brought the same prediction accuracy as variables 1 to 4. This does

not imply that this is incontestably the best unique subset of features for all other types of classifiers as

well. Batitti (1994), for example, showed that subset {1, 3} (or {1, 4}) is the best in terms of

information content and for a multilayer feed-forward neural network classifier. It is expected, thus,

that the feature selection methods tested will point to one of these answers: {3,4} {1,3} or {1,4}.

3.1.5.3 Three-class flow regimes classification in trickle beds
The first real classification problem in the domain of multiphase reactors concerns a trickle-bed reactor

in which the gas (G) and liquid (L) are flowing concurrently downwards throughout a bed of catalytic

solid (S) particles. The efficiency of such a device is highly dependent on the prevailing flow regime in

the reactor for a given set of operational conditions (Dudukovic et al., 2002). Depending on the level

of interaction between fluids, one may generally distinguish three flow regimes: low interaction regime

(LIR), transitional regime (TR), and high interaction regime (HIR). The flow regime, therefore, is the

class variable Y which takes particular values y = 1, 2…Nc. Here, y = 1 for LIR, y = 2 for TR, and y =

3 for HIR, while Nc = 3. The type of flow regime is often determined by the available p features that

characterize the three phases (G-L-S), e.g., porosity, sphericity, gas density, liquid viscosity, fluids’

superficial velocity, etc., which are contained in Xp = (X1,X2,…,Xp). The assignment of class label

(LIR, TR, and HIR) to a particular operating point was based on the visual observation of the

experimenter.

109

2809 flow regime data points (945 LIR, 945 TR., and 919 HIR) were extracted from the Laval

University comprehensive trickle bed reactor database (Larachi et al., 1999). The independent

variables considered as candidates are summarized in Table 3.4 along with the span over which the

measurements were available.

Table 3.4 Candidate features for flow regime class prediction in trickle beds

No Variable Name Symbol Max Min
1 Liquid superficial velocity (m/s) uL 1.74E-01 4.36E-04
2 Gas superficial velocity (m/s) uG 3.74E+00 4.98E-04
3 Foaming property (-) Foam.* 1 0
4 Column diameter (m) Dc 5.10E-01 2.30E-02
5 Bed porosity (-) ε 7.40E-01 2.63E-01
6 Grain specific area (m-1) aG 5.16E+03 4.67E+02
7 Bed specific area (m-1) aT 3.81E+03 2.78E+02
8 Effective particle diameter (m) dp 1.28E-02 1.16E-03
9 Sphericity (-) φ 1.00E+00 3.36E-01
10 Liquid density (kg/m3) ρL 1.18E+03 6.50E+02
11 Liquid viscosity (Pa.s) µL 6.63E-02 3.10E-04
12 Surface tension (N/m) σL 7.62E-02 1.90E-02
13 Gas density (kg/m3) ρG 1.16E+02 1.60E-01
14 Gas viscosity (Pa.s) µG 1.97E-05 1.45E-05

(*) Foaming property is a categorical variable. 0=coalescing, 1=foaming

In the working database, the variables were normalized to fall between 0 and 1. For variables covering

more than 2 decades, log values were used. The classes to be predicted were low interaction regime

(LIR), transition regime (TR), and high interaction regime (HIR).

3.1.5.4 Two-class bed expansion/contraction in three phase fluidized beds
The second problem refers to the initial bed expansion (IBE) or contraction (IBC) in a gas-liquid-solid

fluidized bed. This phenomenon occurs upon introduction of a tiny gas flow rate in a liquid fluidized

bed and is an important indicator of the bubble wake activity and bubble size. Large bubbles are

associated with large wakes that suck liquid into their structures, thereby inducing liquid starvation in

110

the emulsion phase and making the bed contract. On the contrary, small bubbles are associated with

small (or no) wakes that barely affect the emulsion liquid; the bed thus expands smoothly with further

increasing gas throughputs. Similarly, the class variable Y referring to IBE (y = 1) or IBC (y = 2) may

depend on the p features characterizing the three phases (G-L-S) grouped in input vectors Xp for which

we have measurements.

Our goal here is to identify the features that help determine whether initial expansion or contraction

of the bed will occur. The porosity dataset was extracted from the Laval university three-phase

fluidization database (Larachi et al., 2001) after analyzing the behavior of several porosity series at

constant liquid velocities uL and increasing gas velocities uG. From each series, the observation

corresponding to the smallest uG was retained. The class was considered expansion (IBE) if bed

porosity increased with respect to uG in the initial liquid-fluidized state, or, conversely, contraction

(IBC) if bed porosity decreased. As expansion data points were about thrice the contraction ones, two

replicates of the contraction points were made to keep about the same number of samples for each

class.

Table 3.5 Candidate features for the bed contraction-expansion in fluidized beds

No Variable Name Symbol Max Min
1 Liquid velocity (m/s) uL 2.60E-01 1.09E-03
2 Liquid density (kg/m3) ρL 1.62E+03 7.78E+02
3 Liquid viscosity (Pa.s) µL 7.19E-02 7.16E-04
4 Surface tension (N/m) σL 7.59E-02 2.48E-02
5 Solid density (kg/m3) ρs 2.90E+03 1.07E+03
6 Effective particle diameter (m) dp 1.54E-02 6.50E-04
7 Terminal velocity (m/s) ut 7.84E-01 4.32E-02
8 Column diameter (m) Dc 2.18E-01 4.00E-02
9 Bed height at rest (m) H0 6.00E+00 5.08E-02
10 Foaming property (-) Foam.* 1 0

(*) Foaming property is a categorical variable. 0=coalescing, 1=foaming

111

The dataset counted 401 contraction points and 414 expansion points. The candidate features are

summarized in Table 3.5.

3.1.6 Results
In this section are the results obtained by applying feature selection methods M-I through M-IV and

feature ranking method M-V to the four problems described above. For each problem, we have

provided solutions found using the different approaches: 1) which Xs subset produces about the same

discrimination power as the whole Xp set (for M-I to M-IV), 2) what is the rank of variables

importance (M-V).

3.1.6.1 Synthetic problem
As explained in § 3.1.5.1, we expected the features subset {1,3,2} to be identified. First, SFS with

mutual information as a relevance criterion (method M-I) was used. Figure 3.3 shows the result

obtained by applying this filter method on the synthetic problem. The number of divisions in the

domain for each feature was nbx=10. The “+”sign before feature label indicates that the feature was

added to the combination at the corresponding epoch.

Figure 3.3 Sequential forward selection with mutual information as relevance criterion (M-I). “+”
means that the corresponding feature was added to the current subset.

112

As expected the first selected features were {1,3,2}, which contained almost all information available

in the set of features Xp={1,2,…,10}. Once feature 2 was added into the combination, further

enlargement of the feature set yielded no significant increase in the relevance criterion J. Applying

SFS with the alternate relevance criterion AR(1-NN) (method M-II) induced the same order of

preference for the first three variables, features set {1,3,2}. See Figure 3.4. After adding the third

variable, the accuracy rate did not increase significantly; on the contrary, it started decreasing after the

sixth epoch.

Figure 3.4 Sequential forward selection with accuracy rate as relevance criterion (M-II). “+” means
that the corresponding feature was added to current subset.

Method M-III consisting of (l,r) search with AR(1-NN) as relevance criterion was also tested. In this

work, l=2 and r=1 were chosen, as they required the minimum computational effort. At each step, two

features were added and one was removed. The suggested selection subset Xs was also {1,3,2}. This

example was therefore too simple to show any difference in the searching power between SFS and (l,r)

search. The filter/wrapper approach (method M-IV) yielded the same solution as M-III, but with less

computation effort.

The saliency index values calculated with Eq. (3.12) (method M-V) are shown in Figure 3.5.

113

0

0.05

0.1

0.15

0.2

0.25

2 4 6 8 10
of hidden nodes

S
al

ie
nc

y
va

lu
e

1
2
3
4
5
6
7
8
9
10

Figure 3.5 Saliency values for the synthetic problem (M-V)

Here the mean saliency values over 10 distinct ANN training sessions for all 1 to 10 features and

different numbers of hidden nodes were computed. At each training session, 4000 iterations of back-

propagation with adaptive learning rate and momentum were used for a feed-forward neural network

with sigmoid transfer functions in hidden and output neurons using 75% of the 300 available points.

For a number of hidden nodes between 2 and 8, the accuracy rate AR(ANN) of the neural network

classifier evaluated on the generalization set (remaining data 25%) approached 98%. It may therefore

be concluded that the network was not overfitting the training samples when the number of hidden

nodes was less than 8, nor was it underfitting when the number of hidden nodes was equal or more

than 2.

As seen in Figure 3.5, the saliency values for the first three features clearly outperformed the others,

denoting their importance in the classification process. However, saliency index calculation does not

help to confidently rank them. Furthermore, the other somehow significant features, 4 to 6, appeared

less relevant than the group of completely irrelevant features 7 to 9. We may thus conclude that the

Garson method can indicate the rank only if differences in the importance of variables is large.

114

The synthesis results of this problem are sketched in Table 3.6. To conclude, all methods produced the

same result.

Table 3.6 Summary of methods M-I to M-V for the synthetic problem

Selection strategy #of var. Order AR
(1-NN) (%)

None (all available features
considered)

10 NA 97.33

M-I: Forward selection
with I(Y|Xs). (nbx=10)

3 1 3 2 (4 5 6 7 8 9 10)* 98.33

M-II: Forward selection
with AR(1-NN).

3 1 3 2 (4 5 6 7 8 9 10) 98.33

M-III: (l,r) search with
AR(1-NN).

3 1 3 2 (4 5 6 7 8 9 10) 98.33

M-IV: Forward with
I(Y|Xs) continued with (l,r)

search with AR(1-NN).

3 1 3 2 (4 5 6 7 8 9 10) 98.33

M-V: Garson’s saliency
values through ANN

NA (1 2 3) (4 5 6 7 8 9 10)

NA

()* brackets here denote that the features inside cannot be confidently ranked. NA means not available.

3.1.6.2 Anderson’s iris data
The filter method M-I was first applied for this problem. The number of divisions in the domain for

each feature was nbx=20. The selected features were {4,3} in agreement with the conclusions of Li et

al. (2002). Methods M-II through M-IV produced exactly the same results, which is even better

performance than if all features were used. The Garson method identified feature 3 as most important

and feature 1 as the least relevant, while the importance of features 2 and 4 remained undetermined

due to their inconclusive saliency values. For 4 to 10 hidden neurons, the generalization accuracy rate

of the network was almost constant and approached 95%, denoting well-trained networks.

115

Table 3.7 Methods M-I to M-V compared on the iris data classification problem

Method # of var. Order AR
(1-NN) (%)

None (all available
features considered)

4 NA 93.52

M-I: Forward selection
with I(Y|Xs). (nbx=20)

2 4 3 (1 2) 94.12

M-II: Forward selection
with AR(1-NN).

2 4 3 (1 2) 94.12

M-III: (l,r) search with
AR(1-NN).

2 4 3 (1 2) 94.12

M-IV: Forward with
I(Y|Xs) continued with (l,r)

search with AR(1-NN).

2 4 3 (1 2) 94.12

M-V: Garson’s saliency
values through ANN

NA 3 (4 2) 1 NA

()* brackets here denote that the features inside cannot be confidently ranked with the respective feature selection
method. NA means not available.

3.1.6.3 Three-class flow regimes classification in trickle beds
For this problem, we wanted to determine which variables among those listed in Table 3.4 were most

likely to be predictive for the flow regimes: LIR, TR, and HIR. The summary of the analysis of the

different methods is given in Table 3.8. For methods M-I to M-IV, the solution subset Xs consisted of

all variables added (and not removed) until the epoch when the relevance criterion reached a maximum

value.

Method M-III (Figure 3.6) yielded better results than did method M-II, since (l,r) search allows

backtracking and removes variable 7 at the end of step 4 (epoch 12). This variable, bed specific area,

aT, was removed, even if shown to be the best at epoch 2 in conjunction with variable 1 (liquid

velocity, uL). As this problem involved the largest number available features, p, it was a perfect

opportunity to show the usefulness of method M-IV. This method starts with the first 6 most relevant

features found with M-I and continues to grow and prune this pre-selection (Figure 3.7). As seen in

Figure 3.7, the (l,r) search starting with initial pre-selection {5,1,2,11,14,4} continued to improve the J

value.

116

The Garson’s method only provided meaningful ranking for the first 3 variables. It can underline only

that the liquid velocity (feature 1), the gas density (feature 13), and the gas velocity (feature 2) are

important; the other features could not be confidently ranked.

The subset of variables (identified by methods M-III and M-IV): Xs = {uL, µG, uG, σL, Dc, φ, µL, ρG,

 ε, ρL, Foam.} was most likely sufficient for predicting the flow regime classes.

There are several tools presented in recent literature that allow identification of flow regimes in the

form of flow charts, empirical or fully conceptual correlations, for the liquid velocity (uL,tr) that

demarcates the transition between the LIR and HIR (Dudukovic et al., 2002). Most of these methods,

which generally lack robustness when tested thoroughly (Larachi et al., 1999), use only a few variables

(features) to indicate the transition between LIR and HIR. Flow charts like those of Turpin et al.

(1967) or Sato et al. (1973) use only the gas and liquid mass flow rates (involving only the variables

uL, uG, ρL, ρG), being thus restrictive and applying mainly to water-like and air-like fluids.

Table 3.8 Methods M-I to M-V compared on flow regime classification

Method #of var. Order AR
(1-NN)(%)

None (all available
features considered)

14 NA 91.86

M-I: Forward selection
with I(Y|Xs). (nbx=50)

8 5 1 2 11 14 4 12 13 (3 6 7 8 9 10) 92.79

M-II: Forward selection
with AR(1-NN).

11 1 7 14 2 12 11 9 4 13 10 3 (5 6 8) 93.04

M-III: (l,r) search with
AR(1-NN).

11 1 14 2 12 4 9 11 13 5 10 3 (6 7 8) 93.18

M-IV: Forward with
I(Y|Xs) continued with
(l,r) search with AR(1-

NN).

11 1 14 2 12 4 9 11 13 5 10 3 (6 7 8) 93.18

M-V: Garson’s saliency
values through ANN

NA 1 13 2 (4 5 6 7 8 9 10 11 12 3)

NA

()* brackets here denote that the features inside cannot be confidently ranked. NA means not available. Meaning of the
variables:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
uL uG Foam Dc ε aG aT dp φ ρL µL σL ρG µG

117

Figure 3.6 (l,r) search with accuracy rate as relevance criterion (M-III). Only the first 6 steps are
shown for clarity. Dotted circle shows the 4th step. “+” / ”-“ means that the corresponding feature was
added to /deleted from the current subset.

More recent correlations (Dudukovikc and Mills, 1986; Wang et al., 1994) have tried to predict uL,tr by

taking into account also σL, µL and eventually ε. A comprehensive correlation for the liquid transition

velocity was also recently proposed (Larachi et al., 1999) by taking into consideration the variables ρL,

µL, σL, uG, ρG, uL, µG, ε and dp.

Hence, these variables deemed in the literature to be important in flow regime identification were

included directly or indirectly within the subset using the present selection feature algorithms. Note

that the particle diameter was somehow involved through embedding in the sphericity and the bed

porosity defined in () TP ad ε−= 16 and ()
T

P

P a
N

N
×

 −
=

3
2

16
π

επφ (Np: number of particles per unit bed

volume).

118

Figure 3.7 Method M-IV applied on flow regime problem. The method starts with the first six
variables found with M-I and continues until no more increase in the accuracy rate of a 1-NN classifier
is observed. “+” / ”-“ means that the corresponding feature was added to /deleted from the current
subset.

3.1.6.4 Two-class bed expansion/contraction in three phase fluidized beds
In this problem, there were 10 features that might indicate bed contraction/expansion upon

introduction of a tiny gas flow rate in the initially liquid-fluidized bed. Using all the features, we

obtained AR(1-NN) = 96.62 %. The solution provided by methods M-I to M-IV was Xs={5, 4, 1, 7, 9}.

Using only these 5 variables, the accuracy rate decreased slightly to AR(1-NN)=96.26%. The first

method, M-I, based on mutual information criterion, induced the following order of preference:

5 4 1 7 9
ρs σL uL ut H0

while methods M-II to M-IV suggested the following order:

119

7 4 1 9 5
ut σL uL H0 ρs

Figure 3.8 and Figure 3.9 show the difference between the importance of the same selected variables

by the two different relevance criteria: respectively, mutual information (M-I) and accuracy of a

nearest neighbor classifier (method M-II).

Figure 3.8 Sequential forward selection with mutual information as relevance criterion (M-I) on the
bed expansion/contraction problem. “+” means that the corresponding feature was added to the current
subset.

As the same search technique (sequential forward selection) was used in both cases, the difference lay

only in the relevance criterion. Mutual information (M-I) gave equal importance to the solid density,

liquid surface tension, particles terminal velocity, and liquid superficial velocity, and less importance

to the bed height at rest. Method M-II revealed that the terminal velocity is more important than all

other features in the selection, and the other features make comparable contributions to class

predictability. The method M-IV did not provide a sound ranking of the features, as the saliency values

were not significantly different for the 10 variables.

120

Figure 3.9 Sequential forward selection with accuracy rate as relevance criterion (M-II) on the bed
expansion/contraction problem. “+” means that the corresponding feature was added to the current
subset.

The elite subset of variables (identified by methods MI to M-IV): Xs = {ut, σL, uL, H0, ρs} are needed

to accurately predict the initial behavior of the fluidized bed. This conclusion (as in the case of trickle

bed flow regimes) is based on the available data and is supported by the following physical grounds.

For a liquid fluidized bed containing small solid particles, there should be an increase in the bed

porosity sεε −= 1 when superimposing a gas stream to a liquid-fluidized bed (εs = solid hold-up). In

some instances, however, the bed may initially contract until it reaches a critical point, beyond which

the bed height will resume its increase with an increase in gas flow rate. This happens because bubbles

entrain the liquid and particles into their wakes, thereby reducing the amount of liquid in the bed used

to fluidize the remaining particles (Jiang et al., 1997).

Bed contraction/expansion phenomena are conceptualized by the generalized wake model (Bathia and

Epstein, 1974; Jean and Fan, 1986) which suggests that the liquid velocity, the particle terminal

velocity (both present in Xs) and the k and x bubble wake parameters control the initial bed state. The

bubble wake parameters are influenced (Larachi et al., 2001), among other parameters, by σL and ρs,

121

both belonging to Xs. Jiang et al. 1997 also acknowledged that bed contraction is closely linked to the

presence of large bubbles, whose number is somehow affected by the liquid superficial tension, σL.

The Soung (1978) empirical correlation for initial bed state stated that the importance of ut is directly

correlated to uL/uG ratios. Feature selection algorithms reveal that bed height at rest (H0) has an

influence which is relatively marginal with respect to the other variables in set Xs (see Figure 3.8 and

Figure 3.9). This is supported by literature studies that have also shown that initial bed heights could

affect bed expansion or contraction.

3.1.7. Conclusions
In the first part of Chapter 3, we presented different feature selection algorithms, which helped identify

the most relevant variables in two multiphase reactors classification problems. Relevance here was

assessed in terms of:

i) mutual information measuring the dependence among the features and the class variable,

ii) accuracy rate of a one-nearest neighbor classifier known to work well on most problems.

The first criterion belonged to the class of filters and was a statistical measure of the filtering

capabilities of variables. The second belonged to the wrappers category and used a particular classifier

(here 1-NN) to test relevance. A third relevance criterion, based on the Garson’s saliency index,

interpreted the size of the weights of trained neural network classifiers, which we extended to work

with multiple outputs neural networks. The selection algorithms targeting maximization of the

relevance criteria (mutual information and accuracy rate) in charge of the combinatorial search were

sequential forward selection and the (l,r) search method.

We devised here a hybrid filter-wrapper approach, which in the first step used the mutual information

criterion and SFS to obtain a set of features describing the class to be predicted. This set was further

updated using the (l,r) search to maximize the performance rate of a 1-NN classifier. This last method

was faster than a mere (l,r) search starting with an empty set and provided the same results on the test

problems.

122

The different selection schemes were applied to four problems. The first two problems were

benchmarks (synthetic and real) to test whether the schemes captured the proper solutions. The last

two problems were borrowed from the area of multiphase reactors: i) flow regime identification in

trickle beds and ii) bed initial contraction/expansion in three-phase fluidized bed reactors. For both of

these problems, the ULaval multiphase reactors databases were used to identify the most relevant

variables (features) for classification. The feature reduction induced, in all cases, an increase in

classification performance, except for the bed expansion/contraction, where reducing the number of

variables from 10 to 5 slightly decreased the accuracy. In the case of flow regime classification, the

following variables were found to be important in trickle beds: uL, µG, uG, σL, Dc, φ, µL, ρG, ε, ρL,

Foam. For bed expansion/contraction in three-phase fluidized beds, the most relevant features were ρs,

σL, uL, ut and H0. The next part of Chapter 3 addresses the classification issue using as discriminant

features those that appeared relevant in this first step.

123

3.2 Data classification: application to flow regime classification in trickle
beds

3.2.1 Bibliographical review and problematic
In this second half of Chapter Three, the focus is on methods used to perform classification when

pertinent discriminant features are available. The case study detailed herein is the flow regime

classification in trickle bed reactors (TBR). We wanted to obtain a model able to assign the correct

flow regime to any particular realization of the input feature vector.

Many gas-liquid-solid (G-L-S) catalytic reactions and hydro-treating processes of petroleum

refining are conducted in trickle bed reactors (Dudukovic et al., 2002; Holub, 1993; Ramachandran

and Chaudhari, 1983). Their friendly design, which consists of a porous static granular bed traversed

concurrently downward by gas and liquid streams, hides a monumental complexity associated with the

randomness and chaos of fluid and solid partitions and mutual interactions. The mathematical

rationalization of the flow patterns arising from this complexity has long been fueled with intuitive

empirical approaches of limited success, as witnessed by the rapidly increasing number of published

correlations (for an exhaustive survey, see Al-Dahhan et al., 1997; Larachi et al., 1999; Dudukovic et

al., 2002).

The various flow regimes that manifest in trickle beds range from gas-continuous to liquid-continuous

patterns, e.g., trickle, pulse, spray, bubbly, dispersed bubble, foaming, foaming pulsing flow regimes,

and so forth, depending on operating conditions and fluid and packing characteristics. A useful

simplification presented in the literature consists in categorizing the flow patterns as low interaction

regime (LIR), high interaction regime (HIR), and their neighboring transition regime (TR)

(Charpentier and Favier, 1975). However, since the changeover from trickle flow to pulse flow

regimes has been the most widely investigated over the past several decades, LIR and HIR are often

confounded with trickle flow and pulse flow regimes, respectively.

Graphical representation of the data in the form of flow regime maps (Charpentier and Favier, 1975;

Gianetto et al., 1978; Fukushima and Kusaka, 1978; Holub et al., 1993; Larachi et al., 1993) has its

124

own pragmatic merits, considering the lack of generally accepted theories regarding the mechanisms at

the origin of the various transitions. Nonetheless, compression into two or three flow chart coordinates

of the relatively high number of variables having an impact on flow regime transition is not always the

best choice (Larachi et al., 1999). Using a comprehensive knowledge-referenced database, Larachi et

al. (1999) developed a neural-network based correlation for the superficial liquid velocity at transition

uL,tr between trickle flow (LIR) and pulse flow (HIR) regimes. This correlation, like many other

empirical ones, views the transition (TR) as a sharp separation between LIR and HIR, when in reality

it should represent a progressive transition region in-between.

Recently, Tarca et al. (2003c) implemented a series of feature selection algorithms on the same

database to determine which among the several process variables were most relevant in a subsequent

flow pattern recognition classifier predicting flow regime class. The relevance measures considered

were the mutual information (Batitti, 1994) and the accuracy rate of a nearest neighbor classifier.

Following this analysis, the variables predicting the flow regime were the superficial liquid velocity

(uL), gas viscosity (µG), superficial gas velocity (uG), surface tension (σL), column diameter (Dc),

sphericity factor (φ), liquid viscosity (µL), gas density (ρG), bed porosity (ε), liquid density (ρL), and

foam index (Foam). Particle size did not appear in the optimal features set. The most informative

features set established, the next step was to design the data-driven inference engine (classifier).

The present study developed appropriate classification models that would predict the flow regime

class using the above-mentioned features. Instead of approximating the transition superficial liquid

velocity, uL,tr, as done in the past, we attempted to model the probability that a given system state is

affixed to one of the three LIR, TR, or HIR classes. This allowed us to view class TR as a gradual in-

between band demarcating the transition between LIR and HIR classes, rather than as a sharp change.

Flow regime classification can thus be approached like in statistical pattern recognition field. This is

done by considering classes LIR, TR, and HIR, and by searching for discriminant functions predicting

the class function of the system particularities and operating conditions.

There are numerous statistical and neural network paradigms used to perform supervised classification,

using as a basis a data set of examples with known flow regime membership. Those tested in this work

included: Gaussian (quadratic discrimination rule), linear (normal based), nearest mean class, nearest

neighbor, k-nearest neighbor, binary decision tree, radial basis functions, and multilayer perceptron

neural networks. Multilayer perceptrons are by far the most popular neural network classifiers, as they

125

generally exhibit superior performance with respect to other classification algorithms (Lowe and

Webb, 1990). However, using neural networks in the classical way can be unsuitable. Therefore,

specificities of flow regime classification problems must be dealt with as:

• The misclassification cost inequality for non-adjacent classes. Predicting a system in LIR,

while it actually belongs to HIR, is a much more serious misclassification than predicting it in

class TR.

• The adherence of the model to some a priori knowledge in the form of monotonicity

constraints, assuring shift from one class to another. These qualitative rules guarantee model

phenomenological consistency (Tarca et al., 2003a).

This contribution is organized as follows. First, the knowledge-referenced database is briefly

described. It is followed by an introduction to classification, the common classifiers, and the measures

for their performance assessment. A comparison is then made between these classifiers, using as

criteria their cross-validated error, a loss measure pertinent to flow regimes classification, complexity,

and interpretability. Different possibilities of incorporating prior knowledge as class connectivity and

different misclassification costs are presented. Finally, an improved neural network model is devised

for flow regime classification in trickle beds, and its capabilities and limitations are discussed.

3.2.2 Description of flow regime database
The comprehensive knowledge-referenced database of flow regime observations (Larachi et al., 1999)

was considered. A database query was used to retrieve only the sources of records where the authors

observed all three regime classes with no missing values for uL, µG, uG, σL, Dc, φ, µL, ρG, ε, ρL, Foam

within each class. The resulting database contained 5,061 points distributing as: 1,937 LIR, 958 TR,

and 2,166 HIR. Note the uneven distribution of instances among classes with TR class having ca.

twice fewer records. Data normalization was performed as follows:

126

()
()

<

−
−

=

otherwise
xx

xx

x
xif

xx
xx

x

jj

jjr

j

j

jj

jjr

jr

)min(/)max(log
)min(/log

100
)min(
)max(

)min()max(
)min(

''

'
,

'

'

'

''

'
,

'

, (3.13)

In which x’
j is the value of feature j in the feature vector {uL, µG, uG, σL, Dc, φ, µL, ρG, ε, ρL} in the

original measurement units, and r is the index of the record. The ranges of the feature values in the

original measurement units are summarized in Table 3.9.

Table 3.9 Ranges of input variables in the flow regime classification
Variable Symbol Max Min

Liquid superficial velocity (m/s) uL 1.74E-01 9.03E-06
Gas viscosity (Pa.s) µG 1.97E-05 1.45E-05

Gas superficial velocity (m/s) uG 4.08E+00 4.98E-04
Surface tension (N/m) σL 7.62E-02 1.90E-02
Column diameter (m) Dc 5.10E-01 2.30E-02

Sphericity (-) φ 1.00E+00 3.20E-01
Liquid viscosity (Pa.s) µL 6.63E-02 3.10E-04

Gas density (kg/m3) ρG 1.16E+02 1.60E-01
Bed porosity (-) ε 7.50E-01 2.63E-01

Liquid density (kg/m3) ρL 1.18E+03 6.50E+02
Foaming property

(0=coleasing; 1=foaming) FOAM 1 0

3.2.3 Supervised classification, classifiers, and performance evaluation

3.2.3.1 Supervised classification
Let us consider the classification issue. Suppose there are n objects (or patterns) xr, r = 1…n,

, each with a class label yT
prjrrrr xxxx),...,...,(,,2,1,=x i, i = 1, 2…C, where C is the number of classes

(C=3). These samples constitute the design set (){ }nryD rir ...1,)(, == xx to be used for building a

classifier (decision rule or inference engine) able to generalize for any new observation , i.e.,

for any value each of the p features will take in the interval [0,1].

p]1,0[∈x

127

Consider now the C classes , (LIR, TR, HIR)1...Ci ,i =y with a priori probabilities (the probabilities

of each class occurring) p(yi) assumed known. In order to minimize the probability of making an error

in the classifier operation, and with no information other than the prior probabilities p(yi), we assign an

object to class yi if

iypyp ki ≠…=> k ; C2 1, k ,)()((3.14)

which classifies all objects as belonging to the majority class. (For classes with equal probabilities,

patterns are assigned arbitrarily among those classes). Knowing the values of the observation vector x

and its associated conditional probability, x must be assigned to class yi if the probability of class yi,

given the observation x, i.e., p(yi│x), is the largest over all classes. That is, assign x to class yi if:

iypyp ki ≠…=> k ; C2 1, k ,)|()|(xx (3.15)

Using the Bayes’ rule, such a posteriori probabilities can be expressed in terms of the a priori

probabilities and the class-conditional density functions :

)|(xiyp

)(iyp)|(iyp x

)(
)()|()|(

x
xx

p
ypypyp ii

i
⋅

= (3.16)

Eq. (3.15) may therefore be rewritten as:

 assign x to class yi if:

iypypypyp kkii ≠…=⋅>⋅ k ; C2 1, k ,)()|()()|(xx (3.17)

which is known as the Bayes’ rule for minimum error.

In practice, one may set a priori probabilities as equal (p(yi)=1/C) when a new sample point x drawn

from the samples space pR is expected to fall in either class yi with equal probability. Alternatively,

class distribution in the design set D can be considered representative of the sample space. In this case,

the priors were computed simply as p(yi)=ni/n, where ni was the number of class i occurrences in the

design set D.

128

Assuming that is known, we need to estimate only the class conditional density , as

 is independent of the class.

)(iyp)|(iyp x

)(xp

The statistical pattern recognition considers two basic approaches to density estimation: parametric and

nonparametric. In the parametric approach, we assume that is of a known form, but has an

unknown set of parameters. In the nonparametric approach, the density is estimated without making

any functional assumption. In both cases, the design set D of observations with known class is used to

approximate the class-conditional probabilities.

)|(iyp x

3.2.3.2 Classifiers
In multi-class classification problems like flow regime assignment in trickle beds, a classifier may be

viewed as C discriminant functions gi(x) such that:

iygg iki ≠…=∈⇒> k ; C2 1, k ,)()(xxx (3.18)

meaning that a pattern is assigned to the class having the largest discriminant function which,

according to the Bayes decision rule Eq. (3.17), is written as:

)()|()(iii ypypg ⋅= xx (3.19)

Literature is replete with discriminant functions varying in complexity from linear (in which g is a

linear combination of xj) to multiparameter nonlinear functions such as multilayer perceptron neural

networks. Below is a brief description of some classifiers tested in this work, with some details drawn

from Webb (2002).

A) Gaussian classifier (quadratic discrimination rule)

This is a classifier based on the normality assumption of the class-conditional probability function, i.e.:

 −−−= −)()(

2
1exp

)2(

1)|(1

2/12
ii

T
i

i

piyp µxΣµx
Σ

x
π

 (3.20)

129

where µi and are respectively the center and the covariance matrix of the normal distributions and p

the dimensionality of the input vector x. The normal based quadratic discriminant function

(McLachlan, 1992) may be obtained from taking log value of Eq. (3.19) r.h.s. with , as

indicated in (3.20), and removing the terms which remain constant for all classes:

iΣ

)|(iyp x

())(ˆ)(
2
1ˆlog

2
1))(log()(1

ii
T

iiii ypg mxΣmxΣx −−−−= − (3.21)

In Eq. (3.20), the true mean µi and covariance matrix were replaced by their maximum likelihood

estimates

iΣ

∑
=

=
in

r
r

i
i n 1

1 xm (3.22)

and

T
iri

n

r
r

i
i

i

n
))((1ˆ

1
mxmxΣ −−= ∑

=

 (3.23)

B) Normal based linear

A simplification of the gaussian classifier assumes that the class covariance matrices are all the

same, in which case the discriminant functions g

iΣ

i become:

iw
T

iw
T

iii ypg mSxmSmx 11

2
1))(log()(−− +−= (3.24)

The unbiased estimate of the pooled within-group sample covariance matrix Sw is given by

i

C

i

i
w n

n
Cn

n ΣS ˆ
1

∑
=−

= (3.25)

O’Neill (1992) showed that the linear discriminant rule (Eq. (3.24)) is quite distinct from the equal

covariances matrix assumptions and may perform better than the optimum quadratic discriminant rule

130

for normally distributed classes when the true covariance matrices are unknown and the sample sizes

are small.

C) Nearest class mean
This is a quite simple classification approach. The mean vectors of samples in each class mi are

computed with Eq. (3.22). Any new pattern x is assigned to the class whose mean, evaluated with the

Euclidian metric distance, is the nearest. The squared Euclidian distance is

i
T

ii
TT

i mmmxxxmx +−=− 2|| 2 (3.26)

The discrimination function implemented by the nearest mean class is:

i
T

ii wg 0)(+= xwx (3.27)

with and ii mw = 2
0 ||

2
1

iiw m−=

The maximum gi will then correspond to the minimum distance between x and the class mean.

D) Nearest Neighbor

The discriminant function implemented by the nearest neighbor principle is very similar to that of the

nearest class mean classifier. In the nearest neighbor principle, however, distances from the point x are

computed with respect to all patterns in all classes, and the class of the nearest neighbor is assigned to

x.

Consider ni patterns in class yi, , i = 1, 2…C. The nearest neighbor discriminant function for

class y

in
ii pp ,...1

i is

)(max)(
,...,1

xx k
inki gg

i=
= (3.28)

with

131

k
i

Tk
i

k
i

Tk
ig pppxx

2
1)(−= , k = 1, 2…ni ; i = 1, 2…C (3.29)

A pattern x is assigned to the class for which is largest, that is, to the class of the nearest

prototype vector. This discriminant function generates a piecewise decision boundary.

)(xig

E) k-Nearest-Neighbor

This is a natural extension of the nearest neighbor rule. Once the subsidiary discriminant functions

gi
k(x) are computed as described earlier, they are sorted decreasingly to correspond to an increasing

order of distances from x to all the patterns. Suppose that in the first k samples, there are km in class ym,

. The k-nearest neighbor rule reads: assign x to class ykk
C

m m =∑ =1 m if km ≥ ki, i=1,…,C.

For situations where two or more classes receive an equal number of votes, we break the tie by

assigning x to the class, out of the classes with tying values of ki, that has the nearest mean vector

(calculated over the ki samples) to x.

F) Multilayer perceptron neural network

The multilayer perceptron (MLP) is a feed forward neural network that has recently been the subject of

much discussion. Used for function approximation (in regression context) and classification, MLP is

robust compared with other available statistical tools. First introduced by Rumelhart et al. (1986), an

MLP used in a C –class classification problem can be seen as a set of C discriminant functions gi.

()

+

+⋅⋅= +

= =
+∑ ∑ iJ

J

j

p

k
jpjkkjiji wxwg ,1

1 1
,1,,)(ααφσx i=1,…,C (3.30)

with

zj e
z −+

=
1

1)(φ (3.31)

which is the logistic sigmoid.

132

The MLP computing the output i is a single hidden layer, fully connected feed-forward neural

network. (See Eq. (3.30)). There are J neurons (nonlinear function) denoted with jφ . First, the input

vector x is projected onto each of the J directions described by the vectors αj; transforming the

projected data (offset by the bias jp ,1+α) by the nonlinear functions)(zjφ ; then, a linear combination is

done using the weights wi. If σ is taken as the identity function zz =)(σ (obtaining thus a MLP with

linear output units), this is the final result. If σ is taken as the logistic sigmoid Eq. (3.31) (obtaining

thus a MLP with nonlinear output units), a second nonlinear transformation is done. We considered the

latter option in this study.

The free parameters (weights) of the discriminant functions αk,j , k=1,…, p+1, j=1,…J; and wj,i

j=1,…J+1, I=1,…C were estimated using a training procedure. Classically, in one-of-C target coding,

the error of the neural network (constituted by the C discriminant functions gi(x) considered all

together) is computed as

(
2

1 1
,)(∑∑

= =

−=
n

r

C

i
riir xgtE) (3.32)

where tr,i=1 if xr belongs to the class i , and tr,i=0 otherwise.

The training algorithm we used to estimate the weights of the neural network was the Levenberg-

Marquardt algorithm implemented in Matlab® Neural Networks Toolbox.

G) Radial basis functions

Radial basis functions were originally proposed for function approximation. They were first used for

discrimination by Broomhead and Lowe (1988). They are very closely related to both kernel methods

for density estimation and regression and to normal mixture models. Mathematically they can be

described as a linear combination of radially symmetric nonlinear basis functions. They transform a

pattern pR∈x to a C-dimensional output space:

133

1,
1

,

||
)(+

=

+

 −
⋅= ∑ Ji

J

j

j
jjii wwg

β
φ

µx
x i=1,…,C (3.33)

The transfer functions here are gaussian, i.e.,

)exp()(2zzj −=φ (3. 1)

The weights wi are determined with a Least Squares method. The centers µi are selected from the

training samples, and the spread of basis functions is set by trial and error. We used the orthogonal

least squares algorithm of Chen et al. (1991) implemented in Matlab® Neural Networks Toolbox.

H) Binary classification trees

A special type of classifier is the decision tree, which is trained by an iterative selection of individual

features that are the most salient at each node in the tree. The criteria for feature selection and tree

generation include node purity or Fisher’s criterion. The most commonly used decision tree classifiers

are binary and use a single feature at each node, resulting in decision boundaries that are parallel to the

feature axes. They are, therefore, intrinsically suboptimal, but are able to interpret the decision rule in

terms of individual features.

There are several heuristic methods for constructing decision-tree classifiers. They are usually

constructed top-down, beginning at the root node and successively partitioning the feature space. The

construction involves three main steps:

1. Selecting a splitting rule for each internal node, i.e., determining the feature together with a

threshold that will be used to partition the data set at each node.

2. Determining which nodes are terminal nodes. This means that, for each node, we must decide

whether to continue splitting or to make the node terminal and assign it a class label.

3. Assigning class labels to terminal nodes. This is straightforward; labels can be assigned by

minimizing the estimated misclassification rate. The binary tree we used is based on the Quinlan’s C

4.5 algorithm (Quinlan, 1993).

134

3.2.3.3 Performance evaluation

3.2.3.3.1 Misclassification rate
One method used to estimate the misclassification rate involves computing the classifier confusion

matrix on several v-fold cross-validation sets (Kohavi, 1995 for cross-validation issues). Consider the

design set D = {(xr,yi(xr)), r = 1,..,n} for a given classification problem. Let set D be partitioned in v

disjoint subsets (or folds) Ak such that Ak ⊂ D, ∀ k=1,.., v and Ai ∩ Aj = {∅} ∀ i≠j. In each fold Ak the

percentage of samples belonging to class yi, i=1,…,C is about the same as in set D.

Let η(z;D–Ak) denote the class label predicted by the classifier trained on the D–Ak data set when input

z, with true class y(z), is presented. The loss function usually adopted in classification error estimation

is:

()
otherwise

);()y(
1
0

);(),y(k
k

ADif
ADQ

−=

=−
zz

zz
η

η (3.35)

The misclassification rate may be defined as:

(∑∑
= =

−=
v

k

n

m
km

k

ADQ
n

Err
1 1

m

'

);(),y(1 zz η) (3.36)

where represents the number of samples in the set A'
kn k and n is the number of samples in the whole

set D. Thus, the misclassification rate expresses the fraction of points in D that are misclassified.

The meaning of the misclassifications partition can be clarified by using the global confusion matrix,

which is obtained by summing up the v confusion matrices obtained by testing the classifiers on the Ak

sets while being trained on the complementary D-Ak sets.

The size of the confusion matrix CM is (C×C). Each of its cells indicates how many samples are

assigned to class yi (i is the column index) when the actual (true) class index is yj (j is the row index):

135

|9055|)(3
|157510|)(2
|51580|)(1

)(
3

)(
2

)(
1

HIRj
TRj
LIRj

HIR
i

TR
i

LIR
i

class
trueCM

classpredicted

=
=
=

===

= (3.37)

Therefore, the misclassification rate Err is the sum of the off-diagonal elements in the confusion

matrix divided by the sum of all elements in the matrix. In the example given in Eq. (3.37), the design

set has 300 data points; 55 of those were misclassified. The Err is then 55/300.

Note that the classifier error estimate Err obtained using the above procedure yields an upper bound

limit of the error rate, since at each fold a data fraction 1/v is not used in training. However, if the

classifier is trained on all data, the obtained Err value would be lower.

3.2.3.3.2 Loss value using class connectivity information
Let us define a flow regime classification loss function L by proposing a heuristic cost matrix for

misclassification. A reasonable cost matrix could be:

=

013
101
310

class
true

Cost

classpredicted

 (3.38)

Each element in this matrix denotes the cost assigned to predicting a pattern in class j (given by

column index) while the true class is i (indicated by row index). Misclassifying a point increases the

cost by 1, whereas confusing non-adjacent HIR and LIR classes is penalized trice.

Finally, the loss L is obtained through element-wise multiplication of the confusion matrix with the

cost matrix, taking the sum over all elements:

∑∑
= =

⋅=
C

i

C

j
jiCMjiCostL

1 1
),(),((3.39)

136

3.2.4 Results

3.2.4.1 Results with common classifiers
The performance measures, i.e., misclassification rate (Err) and loss value L for the classifiers

presented in §3.2 were tested on the 3-class flow regime database (LIR, TR, HIR, 5 061 records). The

results on flow regime classification with the various statistical and neural network classifiers are

summarized in Table 3.10. For each classifier, the number of parameters, the misclassification rate, the

loss, and the confusion matrix are given.

The smallest prediction error was achieved with the nearest neighbor classifier, which also gave the

minimal loss. However, this classifier needed all the data set (features plus class membership) as

parameters in order to make flow regime predictions. The second best classifier was the MLP neural

network, which exhibited a reasonably low number of free parameters: 153 instead of 60 732 for the

nearest neighbor classifier. The error of the Gaussian classifier was about twice as high as the MLP,

suggesting that the sample distributions in each of the three classes deviated strongly from the

normality assumption used in the quadratic discrimination rule. Also, deviation from normality was

confirmed by the poor performance of the nearest class mean classifier, which could have yielded

better predictions, if the data within each class had been clustered around their class means.

Though the normal-based linear classifier lead to poorer classification than the Gaussian quadratic

classifier, it did, however, largely prevent confounding the HIR with LIR and vice-versa, as revealed

by the lower loss value. The radial basis functions performed rather poorly compared with the MLP

neural network, despite the fact that RBFs use twice as many free parameters.

The binary classification tree, which is the most interpretable classifier among all listed in Table 3.10,

was too imprecise to be considered further.

The MLP neural network exhibited the best trade-off between accuracy (ranked third for

misclassification rate) and complexity (ranked third with lowest number of parameters) as shown in

Table 3.10. It will be presented in the next section, which focuses on alternative methods of

embedding prior knowledge in this type of classifier.

137

Table 3.10 Results on flow regime classification problem with statistical and neural network classifiers

Classifier
Parameters Misclassifi -

cation rate
(%)

Loss Confusion Matrix

A) Gaussian (quadratic
discriminant)

Cyp i /1)(= , i =1…C

396)(=+⋅⋅ pppC 23.3 1899

1668259239
84655219
1212571559

B) Normal based linear

discriminant
154=⋅+⋅ pppC 28.0 1671

155057343
10777972
835411313

C) Nearest class mean 33=⋅ pC 60.1 4431

1098102741
20168077
6531044240

D) Nearest Neighbor 60732)1(=+⋅ pn 9.0 840

20175792
9080761

101531783

E) k- Nearest Neighbor

(k=5)
607331)1(=++⋅ pn

10.9 1011

201146109
13573786
120571760

F) Multilayer perceptron
J=10 hidden neurons, 200
ite. (LM) (Standard MLP).

CJJp ⋅++⋅+)1()1(
153=

11.5 1005

197674116
114725118
96631778

G) Radial basis functions

J=20 hidden neurons

1)1(+⋅++⋅ CJJp
284=

21.5 1854

197326167
354353251
216741760

H) Binary classification

tree

Nodes=20, Leafs=11

++⋅ LeafsNodes3
=−⋅+)(3 LeafsNodes

98=

29.8 2842

19735188
479141338
479191439

138

3.2.4.2 Knowledge augmented MLP classifiers
There are at least two types of qualitative prior information available about the flow regime

classification that could improve MLP performances.

MLP-A) Using costs directly in MLP training

Multi-class problems often use a 1-of C coding scheme for MLP training. Unfortunately, this does not

take into account the different costs associated with misclassifications.

A possible way to use the cost information without altering the learning power of MLP training

algorithms is to use the rows of the Cost matrix as target vectors for the neural network (Lowe and

Webb, 1990).

The cost matrix (Eq. (3.37)) normalized by division with its maximum element (in order to obtain

values in the interval [0 1]) was therefore used for network training:

Class Classic target vectors Cost coded target vectors

1 [1 0 1] [0 1/3 1]
2 [0 1 0] [1/3 0 1/3]
3 [0 0 1] [1 1/3 0]

The class to which a pattern is assigned by this trained network corresponds to the coded target vector

with respect to which the networks’ response vector is closest in terms of the Euclidian distance. The

confusion matrix, the loss value, and misclassification rates obtained by this neural network are given

in Table 3.11.

MLP-B) Continuous output MLP classifier

Because the classes are somehow ordered-- i.e., LIR, then TR, followed by HIR-- we may change the

classification into a regression. For this, a single output MLP is used. As the output is endowed with

sigmoid transfer function, the following coding is used: 0 for LIR, 0.5 for TR, and 1 for HIR.

Once trained, the network will produce an output for each new input point x. This will be assigned

to class LIR if

)(ˆ xy

0.25)(ˆ0 <≤ xy , to TR if 75.025.0)(ˆ <≤ xy , or to HIR if 0 . 1)(ˆ75. <≤ xy

139

The number of hidden nodes chosen by trial and error was 12, which gave us 157 parameters. This

number was almost the same as in the standard MLP, (see the Table 3.10) as well as in MLP-A

discussed previously. The performance in terms of loss is presented in Table 3.11. These results are

far better than those obtained with MLP-A.

MLP-C) Continuous output MLP classifier with monotonicity constraints

Another aspect of a priori class connectivity knowledge on flow regime classification concerns the

shift of the class memberships in a hierarchical manner subject to monotonic variations in some of the

process variables. As an example, from this prior knowledge, the influence of liquid and gas

superficial velocities and gas density on class connectivity is given as:

uL ↑: class moves in the order LIR → TR → HIR

uG ↑: class moves in the order LIR → TR → HIR

ρG ↑: class moves in the order HIR→ TR→ LIR

As the classification problem turns into a regression one, these rules may be also viewed as:

0)(ˆ
≥

∂

Lu
y x (3.40)

0)(ˆ
≥

∂

Gu
y x (3.41)

0)(ˆ
≤

∂

G

y
ρ

x (3.42)

The same network configuration as in MLP-B is then trained in such a way to guarantee monotonicity

behaviour. The training in our study was done as described in a previous work (Tarca et al., 2004a)

using a genetic algorithm-genetic hill climber optimizer. The model provided by this methodology was

fine-tuned using a gradient-based constrained technique implemented in Matlab ®. Both optimization

schemes were performing the following constrained minimization problem:

140

∑
=

−
TN

i
iiw

yy
1

2)(min) (3.43)

subject to:

0, ≥⋅ jkj ww , ∀ and k={1,3} (3.44) Jjj ≤≤1,

0, ≤⋅ jkj ww , ∀ and k={8} (3.45) Jjj ≤≤1,

In Eq. (3.43) yi represents the coded desired output (y=0 for LIR, y=0.5 for TR, and y=1 for HIR)

while is the value predicted by the model for the training sample xiŷ i. (See Table 3.12 for the full set

of equations).

If all the weights between the input k and the hidden node j have the same sign as the weights

from the hidden node j to the output node, then the neural network function will be monotonically

increasing with respect to the input k in the entire definition domain. Conversely, if the signs are all

opposite, then decreasing monotonicity will be achieved. The inputs {1,3} referred to in eq. (3.44)

correspond to u

jkw , jw

ŷ

L and uG, while {8} correspond to ρG. A five-fold cross-validation was carried out to

estimate an upper bound limit of the misclassification rate for all classifiers. The 16.2%

misclassification rate for MLP-C was slightly higher than for MLP-B (Table 3.11) which is natural as

long as MLP-C was trained respecting the monotonicity constraints. Using all the training data (5061)

for building an MLP-C classification model yielded, as expected, a slightly lower misclassification rate

of 15.5% with respect to the cross-validation procedure. Moreover, this MLP-C model required only

118 parameters, as opposed to. 157 with MLP-B. Table 3.12 gives the full set of equations for the

MLP-C model. An Excel spreadsheet implementing the model is also available at

http://www.gch.ulaval.ca/bgrandjean or http://www.gch.ulaval.ca/flarachi. Figure 3.10 illustrates the

flow regime boundaries obtained with MLP-C for a particular trickle bed system with the following

simulated gas-liquid-solid properties:

 µG σL Dc φ µL ρG ε ρL Foam
1.74E-05 7.00E-02 5.00E-02 1.00E+00 1.02E-03 1.20E+00 3.80E-01 1.00E+03 0

http://www.gch.ulaval.ca/bgrandjean
http://www.gch.ulaval.ca/flarachi

141

Figure 3.10 also shows the 31 experimental data points that both fulfill the above constraints and fall in

the transition regime class. Note that the MLP-C classifier predicts a progressive changeover from LIR

to HIR through a relatively broad band TR, particularly in the low gas load region. Obviously the level

of regime interaction shifts in the right direction with increasing uL, uG, and ρG, as illustrated in Figure

3.10 and Figure 3.11. Note how a low-pressure HIR operation (point in asterisk) is shifted to the

transition regime class at high pressure (Figure 3.11). A further increase in gas density would result in

full operation in LIR.

Table 3.11 Knowledge augmented MLP classifiers

Classifier
Prior knowledge

considered

Misclassifi -

cation rate (%)

Loss Confusion Matrix

Standard Multilayer

perceptron

J=10 hidden neurons,

 3 output nodes

None

11.5 1005

197674116
114725118
96631778

Cost trained Multilayer

perceptron (MLP-A)

J=10 hidden neurons,

3 output nodes

Cost encoded in

targets

15.1 892

198414933
152617189
312101696

Continuous output MLP

classifier (MLP- B above)

J=12 hidden neurons,

1 output node

Considers a natural

ranking of the classes,

so LIR shares no

border with HIR.

14.8% 871

194718831
162632164
291771731

Continuous output

monotonic MLP

classifier (MLP-C)

J=12 hidden neurons,

 1 output node

Considers a natural

ranking of the classes

and monotonicity:

uL↑ Class ↑; uG↑ Class ↑

ρG ↑ Class ↓

16.22 % 935

193919829
169597192
282051704

142

Figure 3.10 Decision boundaries delineating LIR, TR, and HIR classes obtained from continuous
output monotonic MLP-C model. Experimental data points in the chart are known to belong to TR
class.

LIR

HIR

*

ρG=1 kg/m3

ρG=10 kg/m3

Figure 3.11 Incidence of gas density on regime classification decision boundaries obtained from
continuous output monotonic MLP-C. The operating point highlighted with an asterisk (*) belongs to
HIR class at ρG = 1 (located right of the TR/HIR border). At ρG = 10, it falls within TR band. The
system’s properties, with the exception of gas density, are the same as in Figure 3.10 above.

143

We close this chapter by making the reader aware of the fact that all the performance measures in

Table 3.11 were obtained by 5-fold cross validation. At each fold, new random initialization of weights

was done, in agreement with current recommendations for neural networks practice (Flexer, 1994;

Prechelt, 1998).

3.2.5 Conclusions

Most of the studies done thus far on flow regime classification in trickle beds have focused on

correlating the liquid superficial velocity demarcating the transition between low (LIR) and high (HIR)

interaction regimes.

In this work, a conceptually different approach was taken, in which we modeled the class-conditional

probabilities for the three flow patterns: LIR, TR, and HIR. Instead of formulating an unlikely sharp

transition, a more physical TR band marking the gradual changeover between LIR and HIR was

proposed. Instead of classical classification MLP neural networks, which use as many output neurons

as classes, in this work we exploited class connectivity as a priori knowledge and encoded the output

as a real variable, taking 0 at LIR, 0.5 at TR, and 1 at HIR. In doing so, misclassification between non-

adjacent classes LIR and HIR was reduced significantly. Furthermore, monotonicity with respect to

some variables, for which a priori knowledge was available, was mathematically guaranteed through

inclusion of constraints. This was achieved by forcing the signs of the weights in the MLP neural

network model, and training it with a genetic algorithm-genetic hill-climber optimizer and a

constrained optimization algorithm. This facilitated identification of an MLP model having a

misclassification error rate of 16.2%. The proposed classification MLP model, which incorporated

prior knowledge of actual system behavior, is more interpretive than classical black-box neural

correlations.

144

Table 3.12 Neural network flow regime classifier equations

()∑ =
−+

= 12

1
exp1

1

i iij

j
Uw

H

 1101 10 =≤≤ Hj

()∑ =
−+

= 10

1
exp1

1ˆ
j jjHw

y

LIRy ⇒<≤ 25.0ˆ0

TRy ⇒<≤ 75.0ˆ25.0
HIRy ⇒≤≤ 1ˆ75.0

275.4
1003.9

log 6

1

×

=
−

Lu

U
6

5

2 102.5
1045.1

−

−

×
×−

= GU
µ

913.3
1098.4

log 4

3

×

=
−

Gu

U
2

2

4 100.6
1090.1

−

−

×
×−

= LU
σ

1

2

5 1090.4
1030.2
−

−

×
×−

= CD
U

1

1

6 1080.6
1020.3

−

−

×
×−

=
φU

287.2
1010.3

log 4

7

×

=
−

L

U

µ

862.2

1060.1
log 1

8

×

=
−

G

U

ρ

1

1

9 109.4
1063.2
−

−

×
×−

=
εU

2

2

10 1028.5
1050.6

×
×−

= LU
ρ

FoamU =11 112 =U

 ×≤

×≥
−

−

1

6

1074.1

1003.9

L

L

u

u

×≤

×≥
−

−

5

5

1097.1

1045.1

G

G

µ

µ

×≤

×≥ −

0

4

1008.4

1098.4

G

G

u

u

×≤

×≥
−

−

2

2

1062.7

1090.1

L

L

σ

σ

×≤

×≥
−

−

1

2

101.5

103.2

C

C

D

D

×≤

×≥ −

0

1

101
102.3

φ

φ

 ×≤

×≥
−

−

2

4

1063.6

101.3

L

L

µ

µ

×≤

×≥ −

2

1

1016.1

1060.1

L

G

ρ

ρ

×≤

×≥
−

−

1

1

1050.7
1063.2

ε

ε

×≤

×≥
3

2

1018.1

1050.6

L

L

ρ

ρ

=
=

foamigforFoam
coleascingforFoam

1
0

wij jÎ1 2 3 4 5 6 7 8 9
1 1.986E+1 7.017E+0 8.264E+0 2.436E+1 2.784E+1 -9.777E+0 -2.778E+1 -3.131E+1 1.146E+1
2 -1.199E+1 -1.043E+1 -2.281E+1 3.409E+0 -6.482E-1 -7.566E-1 1.253E+1 -2.336E+1 -2.966E+1
3 1.218E+1 1.141E+1 1.829E-1 2.109E+1 5.134E+0 -3.507E+0 -2.182E+0 -2.622E+1 2.618E+1
4 -1.203E+1 -1.053E+1 -2.478E+1 -5.899E+0 -1.750E+0 1.642E+0 1.828E+1 -2.317E+1 -3.303E+1
5 -3.540E+0 -1.487E+0 -1.041E+1 -2.095E+0 -2.347E-1 3.805E-1 4.389E+0 -4.976E+0 -1.343E+1
6 -2.013E+1 -1.409E+1 -3.009E+1 7.866E+0 -4.172E-1 5.059E+0 2.690E+1 -2.999E+1 -3.844E+1
7 -6.814E+0 -5.277E+0 -1.588E+1 5.081E-1 3.128E+0 5.048E+0 2.257E+1 -1.193E+1 -2.168E+1
8 -1.617E+1 -9.679E+0 -2.385E+1 -3.235E+0 -5.575E-1 4.170E+0 4.126E+0 1.511E+1 -5.351E+0
9 -8.867E+0 -5.328E+0 -1.556E+1 1.758E+0 -3.030E+0 4.196E+0 1.343E+0 -1.105E+1 -2.171E+1

10 -9.832E+0 -8.898E+0 -2.098E+1 2.572E-2 -2.376E+0 -9.044E+0 1.752E+1 -1.995E+1 -2.550E+1
11 -5.335E+0 -4.379E+0 -9.935E+0 1.213E+1 2.067E-1 -6.252E+0 -2.585E+1 -1.240E+1 -1.833E+1
12 -2.607E+1 -1.578E+1 -3.874E+1 1.631E+1 -1.837E+1 -5.814E-2 1.474E+1 -3.864E+1 -4.358E+1
wj 1 2 3 4 5 6 7 8 9 10
 1.943E+1 1.509E-1 5.710E-3 4.295E+1 6.556E+0 -2.789E+1 -2.725E+1 -7.936E+0 2.466E+1 -1.824E+1
*:A “user-friendly” spreadsheet of the neural correlation is accessible at (http://www.gch.ulaval.ca/bgrandjean)

145

3.3 Notation

aG Grain specific area

AR Accuracy rate of a classifier Ar=1-Err

aT Bed specific area

C Number of classes

CM Confusion matrix having the size C×C

Cost Cost matrix having the size C×C

d Dimension of a subset of the set Xp, d≤p

Dc Column diameter

dE Euclidian distance

dp Particle diameter () TaPd ε−16=

Err Misclassification rate, defined as the fraction of samples misclassified by a particular classifier.

Foam. Foaming property: 0=coalescing, 1=foaming

)(xig Discriminant function of the class yi

H Entropy function

H0 Bed height at rest

I(Y|Xs) Mutual information (information content) given by Xs on Y

J Relevance criterion (I(Y|Xs) or AR(1-NN)); Number of hidden nodes in an ANN

L Loss function

146

n Number of training instances ωk; number of samples in the design set

 (){ }nryD rir ...1,)(, == xx

ni Number of class i occurrences in the design set D

nbx Number of divisions in the space of each variable when assessing probabilities using bins

Nc Number of classes

Np Number of particles per unit bed volume

p Number of features available for a classification problem; i.e., size of Xp

p(yi) Prior probability of yi

)|(xiyp Posterior probability (probability of class yi occurring, given x)

)|(iyp x Class-conditional density functions

Sind(i,k) Saliency value for the input i with respect to the output k in a ANN

u Phase velocity

ut Particle terminal velocity in a three phase fluidized bed

w[i,j] Input to hidden layer weight in the ANN

w[j,k] Hidden to output layer weight in the ANN

wi,j, wj ANN connectivity weights

xp Particular realization of Xp

Xp Set of all available features

Xs Subset of features from Xp. Xs⊆ Xp

x Point in the normalized input feature space x={uL, µG,uG, σL,Dc, φ, µL, ρG,ε,ρL,Foam}

147

y Particular value of the generic class variable Y; class variable taking the discrete values yi, i

= 1, 2…C, ; continuous variable taking the values 0 for LIR, 0.5 for TR,

and 1 for HIR

},,{ HIRTRLIRyi ∈

ŷ Output of the neural network model

ε Bed porosity

φ Particle sphericity ()
T

P

P a
N

N
×

 −
=

3
2

16
π

επφ

µ Phase viscosity

ρ Phase density

σ Phase superficial tension

ωk Training instance ω={ xp ,y}

Abbreviations

ANN Artificial neural network (here, this term designates a multi-layer perceptron neural network)

FS Feature selection

G Gas

HIR High interaction regime

IBC Initial bed contraction

IBE Initial bed expansion

L Liquid

148

LIR Low interaction regime

PK Prior knowledge

S Solid

SFFS Sequential floating forward selection

SFS Sequential forward selection

TR Transition flow regime

149

Conclusion

In this work we addressed three key issues in neural networks modeling (regression and classification)

of multiphase reactors data: i) feature selection (FS), ii) model design (MD) (architecture and

parameters learning), and iii) qualitative prior knowledge matching or embedding (PK). We made

methodological recommendations, which we validated by the resulting state-of-the-art neural network

models. The Decision Makers’ Direct (Issue No: 01/03/1) says that:

“The science of modeling involves converting domain reality- quantitative, and qualitative (like ethics,

preferences, experience) to mathematical abstraction, using quantitative tools, and providing solutions

as abstracted reality. The ultimate objective is to give quantitative expression to the decision maker's

expertise.”

In this light, quantitative domain reality consisted of the pairs of known input-output we had for

training the model, while the qualitative domain reality was what we referred to as prior knowledge.

Now, a synthesis of the main results:

For the liquid hold-up in counter-current packed beds, a study was conducted to obtain

dimensionless correlations that, in addition to giving a low estimate of the AARE (average absolute

relative error), reveal monotonic trends with respect to six dimensional variables influencing liquid

holdup: gas and liquid velocities and densities, as well as liquid viscosity and superficial tension. The

subsidiary problematic we addressed here was how to select the appropriate dimensionless numbers to

be used as network inputs. Many feature selection criteria exist, but we decided to evaluate the

usefulness of features based on the error of the resulting model and the extent to which it matched

prior knowledge in terms of monotonicity. Monotonicity was evaluated near the edges of the

dimensional variables definition domain. A global error was defined by combining AARE on training

and test sets with the number of monotonicity tests the model failed. This global error was minimized

using a genetic algorithm whose operators were customized to search only among combinations with

an imposed number of features. We maintained the model design (MD) typically used in the field:

networks architecture determined by trial and error and weights learning with BFGS method. The

150

conclusion of this first study was that such an automated procedure was efficient. The genetic

algorithm was able to deal with the minimization of the nonmonotonic subset goodness criterion,

identifying an elite of 5 dimensionless numbers (BlG, WeL, St’L, K2, K3) which give an AARE of less

than 13% on all data while matching all the necessary (but not sufficient) monotonicity conditions.

 Using the dimensionless neural network modeling of pressure drop in randomly packed beds as

a case study, we evaluated the effectiveness of the simple monotonicity tests we were performing near

the edges of original variables ranges to ensure an overall monotonic behavior. We observed that a

simple trends inspection in some points of the feature space was not necessarily representative of the

model’s monotonicity behavior likelihood in the entire domain. Therefore, we proposed gradient

conditions checking in the vicinity of all the points available for training. Using the same methodology

based on the genetic algorithm, but with reinforced gradient conditions, we identified a neural model

useful for predicting the pressure drop in counter-current packed beds as

(χ=
ρ

∆ ,S,K,Eo,Eo,Fr,Blf
g
Z/P

B1
'
LLLL

L
). The overall AARE of the model was approximately 20%

with 127 parameters. Compared with the model of Piché et al., (2001c) our model was superior,

restoring the expected monotonic trends to almost 79% of the data points, compared with less than

20% for the former model.

As we were unable to decrease to zero the number of data points around which at least one of

the monotonicity tests failed, we tried to combine several ANN models issued by the GA-ANN

methodology. The point was to exploit the fact that there were different good features sets and

architectures that lead to similar error rates. It was hoped that these models, being different, were not

all bad in the same region of the original variables’ input space. The outputs of each constituent model

were weighted and converted into a new prediction via a linear meta-model. The resulting predictor

not only showed an improved error rate, but also passed the monotonicity tests in more than 92% of

the data points, compared with 79% for the single best individual model used.

A new aspect of this study was its dimensional approach. We tried to correlate the reactor’s

characteristics of interest directly to the original variables, rather than to dimensionless groups derived

from them. As case study, the same liquid holdup problem was considered. The inputs were fixed to

eleven original variables: uG, uL, ρG, µL, aT, ε , φ, Z, DC, ρL, and σL. The recent work of Kay and Ungar

(1993, 2000) has shown that is possible to guarantee monotonicity of the neural model if the variables

151

with respect to which monotonicity is expected are directly fed into the neural network as inputs. Our

contribution to their approach resides in the fact that we used concavity information (i.e., the signs of

the second order derivatives with respect to some inputs). For concavity information matching, we

used some necessary conditions, as the sufficient ones were unable to achieve via the weights’ signs.

The learning of the weights under monotonicity and concavity penalties was performed with a genetic

algorithm-genetic hill climber optimizer, which proved superior to classic binary GAs. This

evolutionary optimization algorithm combines classic genetic search and hill climbing in attractive

regions of space. The approach efficiency was demonstrated by obtaining a neural model that

guaranteed increasing liquid-holdup with increasing uG, uL, µL, σL, and aT or decreasing ρL, while the

slope increased with uG and decreased with uL in some regions of the validity ranges. This model can

be considered a contribution because it is less complex and more accurate than other neural and

empirical correlations while matched all the priori knowledge considered in terms of mono-concavity.

A second group of applications considered in this dissertation was the supervised classification.

As with the regression problems, feature selection was the first step to consider. We studied different

feature selection algorithms, which allowed us to identify the most relevant variables in two

multiphase reactors classification problems. Relevance here was assessed in terms of i) mutual

information, which is a measure of the statistical dependence between feature subsets and the class

variable, and ii) accuracy rate of a reliable one-nearest neighbor classifier that was simpler to operate

than an ANN. A third relevance criterion, based on Garson’s saliency index, interpreted the weights’

size of trained neural network classifiers. We extended it to work with multiple outputs neural

networks. The selection algorithms that targeted maximization of the relevance criteria (mutual

information and accuracy rate) in charge of the combinatorial search were sequential forward selection

and the (l,r) search method. We devised here a hybrid filter-wrapper approach, which in the first step

used the mutual information criterion and SFS to obtain a set of class-informative features. This set

was updated by using the (l,r) search to maximize the performance rate of a 1-NN classifier. This

method is faster that a mere (l,r) search starting with an empty set, and gives the same results on the

test problems. The different selection schemes were applied to four problems. The first two problems

were benchmarks (synthetic and real) to test whether the schemes were able to find the proper

solutions. The last two problems were real multiphase reactors: a) flow regime identification in trickle

beds, and b) bed initial contraction/expansion in three-phase fluidized bed reactors. For both of these

problems, the ULaval multiphase reactors databases were used to identify the variables (features) most

152

relevant for classification. In all cases, the feature reduction induced an increase in classification

performance, except for the bed expansion/contraction, where reducing the number of variables from

10 to 5 slightly decreased the accuracy. In the case of flow regime classification, the variables uL, µG,

uG, σL, Dc, φ, µL, ρG, ε, ρL, and Foam were selected as informative about the flow regime. For bed

expansion/contraction in three-phase fluidized beds, the most relevant features were ρs, σL, uL, ut, and

H0.

The final section of Chapter Three dealt with the classification issue itself, using as

discriminant features those identified as relevant in this first step. We considered here only the flow

regime classification in trickle bed reactors. Most work thus far in terms of empirical correlations for

flow regime classification has focused on the correlation of the liquid superficial velocity at transition

between low (LIR) and high (HIR) interaction regimes and the physical properties of the three phases

involved. We used a conceptually different approach by using a neural network model to approximate

the probability of each class occurring as a function of the phases’ properties. Instead of obtaining a

simple transition curve between classes LIR and HIR, we obtained a band, a physical manifestation of

the gradual changeover in reality. The neural network model had an overall misclassification rate of

about 16%, assessed by 5-fold cross-validation on 5061 data samples. While classic use of MLP neural

network in classification assumes as many output neurons as classes, we used the class connectivity

information as apriori knowledge and built a single output neural network classifier. Actually, we

encoded the output as a real variable, taking 0 value at LIR, 0.5 at TR, and 1 at HIR. By so doing, the

misclassifications between non-adjacent classes LIR and HIR were significantly reduced. Furthermore,

the monotonicity of the interaction level between gas and liquid, with respect to the gas and liquid

superficial velocities and gas density, was mathematically guaranteed. This was achieved by

constraining the signs of the neural network model. The weights optimization was conducted with the

genetic algorithm-genetic hill-climber optimizer designed previously. The resulting model was fine-

tuned with a constrained optimization algorithm.

Following are some recommendations when building neural networks correlations for continuous

(regression) or discontinuous (classification) reactors characteristics, assuming sufficient data records

are available, and the important independent variables describing the three phases are available. This

hypothesis was considered to hold in the cases studies we treated in his work. The importance of

having his hypothesis true may be illustrated with the following popular quote in computer modeling:

153

 “A theory has only the alternative of being right or wrong. A model has a third possibility: it may be

right, but irrelevant.” Eigen, Manfred (1927-), The Physicist's Conception of Nature

It is, however, not enough to have good data to obtain trustful models; we must also use any available

qualitative information and select only the most relevant features. Recommendations follow:

¾ Use dimensional variables as network inputs, rather than dimensionless groups formed

by their nonlinear combinations. Reasons for this include following: I) the performance of

the resulting model is not significantly affected by input representation (dimensional or

dimensionless); II) it is more difficult to identify a good set of dimensionless groups than to

identify the dimensional variables relevant to the modeling task; III) when monotonicity of the

model’s output is expected with respect to some dimensional variables, it is impossible to

guarantee it if nonlinear combinations of them (dimensionaless numbers) are used as inputs. Of

course, we do not underestimate here the power of the dimensionless analysis, which allows

extrapolation of the model’s applicability outside the ranges of the raw variables within the

training data base.

¾ Determine a set of relevant features using mutual information between sets and output

variables or the accuracy of a custom model, while using as combinatorial search algorithms

either sequential methods or genetic algorithms. Genetic algorithms are most suitable when the

search space is large and a good guess of the number of variables to search for is available.

¾ Use monotonicity and concavity prior knowledge, if available. In regression problems, this

squeezes the confidence band of the model (Kay and Ungar 1993, 2000) and reduces

overfitting. Moreover, a guaranteed monotonic model is more interpretable. The interpretability

increases because one will know in advance how the model’s output will behave when the

inputs vary. In classification problems, using information on connectivity of classes, as well as

different misclassification costs, may reduce the chance of some particular types of

misclassifications.

¾ Compare the crossvalidated performance measure of the neural network classifiers with

classic statistical discriminants or decision trees to ensure that there is no simpler or more

interpretable model which might perform as well as the neural network model.

154

References
Abu-Mostafa, Y. S. (1993). A method for learning from hints. Advances in Neural Information

Processing Systems, 5, 73-80.
Acuna, G., Cubillos, F., Thibault, J. and Latrille E. (1999). Comparison of methods for training grey-

box neural network models. Computers and Chemical Engineering Supplement, S561-S564.
Al-Dahhan, M., Larachi, F., Dudukovic, M.P., Laurent, A. (1997). High pressure trickle bed reactors:

A review. Industrial and Engineering Chemistry Research, 36, 3292-3314.
Alpaydin, E. (1993). Multiple networks for function learning. In Proc. IEEE Int. Conf. Neural

Networks, 1, 9-14, IEEE Press.
Alpaydin, E. (1998). Techniques for combining multiple learners. In Proc. Eng. Intelligent Systems, 2,

6-12, ICSC Press.
Anderson, E. (1935), The irises of the Gaspe Peninsula, Bulletin of the American Iris Society, 59, 2–5.
Ash, R.B. (1990). Information Theory. Dover Publications, New York.
Batitti, R. (1994). Using mutual information for selecting features in supervised neural net learning.

IEEE Transactions on neural networks, 5(4), 537-550.
Belsley, D.A. (1991). Conditioning diagnostics: Colinearity and weak data in regression. John Wiley

& Sons, New York.
Benediktsson, J.A., Seveinsson, J.R., Ersoy, O.K., Swain, P.H. (1993). Parallel consentual neural

networks. In Proc. IEEE Int. Conf. Neural Networks, 1, 27-32, IEEE Press.
Bensetiti, Z., Larachi, F., Grandjean, B. P. A., Wild, G. (1997). Liquid saturation in concurrent upflow

fixed-bed reactors: a state-of-the-art correlation. Chem. Eng. Sci., 52, 4239-4247.
Bhatia, V. K. and Epstein, N., (1974). Three phase fluidization: a generalized wake model, in

Fluidization and Its Applications, in Angelino, et al., eds., Cepadues-Editions, Toulouse, 380-
392.

Billet, R., Schultes, M. (1993). A Physical Model for the Prediction of Liquid Hold-up in Two-phase
Countercurrent Columns. Chem. Eng. Technol., 16, 370-375.

Billet, R., Schultes, M. (1999). Prediction of Mass Transfer in Columns with Dumped and Arranged
Packings. Trans. IchemE., 77, 498-504.

Bishop, C.M. (1995). Neural Networks for pattern Recognition. Oxford: Clarendon Press.
Blanco, A., Delgado, M., Pegalajar, M.C. (2000). A Genetic Algorithm to obtain the Optimal

Recurrent Neural Network. Int. J. Approximate Reasoning, 23, 67-83.
Branke, J. (1995). Evolutionary algorithms for neural network design and training. In Proceedings 1st

Nordic Workshop on Genetic Algorithms and its Applications, Vaasa, Finland.
Brasquet, C., Lecloirec, P. (2000). Pressure Drop Through Textile Fabrics – Experimental Data

Modelling Using Classical Models and Neural Networks. Chem. Eng. Sci., 55, 2767-2778.
Breiman, L. (1992). Stacked regressions. Technical report 367, Department of Statistics, University of

California, Berkeley, California 94720, USA.
Broomhead, D.S. and Lowe, D. (1988) Multi-variable functional interpolation and adaptive networks,

Complex Systems, 2(3):269-303.
Carroll, D.L. (1996). Chemical Laser Modeling with Genetic Algorithms. AIAA J. 34, 338-346.
Charpentier, J. C. and Favier, M. (1975). Some liquid holdup experimental data in trickle bed reactors

with foaming and nonfoaming hydrocarbons. AIChE J. 21, 1213.
Chen, S., Cowan, C.F.N.; Grant, P.M. (1991) Orthogonal least squares learning algorithm for radial

basis function networks, IEEE Transactions on neural networks 2(2): 302-309.

 155

Cloutier, P., Tibirna, C., Grandjean, B. P. A., Thibault, J. (1996). NNfit, logiciel de régression utilisant
les réseaux à couches, http://www.ulaval.ca/∼nnfit.

Colquhoun-Lee, I., Stepanek, J. B. (1978). Trans. Inst. Chem. Eng., 56, 136.
Côté, M., Grandjean, B.P.A., Lessard P. and Thibault J. (1995). Dynamic modeling of the activated

sludge process: Improving prediction using neural networks. Wat. Res. 29(4), 995-1004.
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals, and Systems, 3, 303-314.
Daniels H. and Kamp B., (1998). Application of MLP Networks to Bond Rating and House Pricing.

Neural Comput. & Applic., 8, 226-234.
De Jong, K.A. (1976) An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD

Thesis, University of Michigan, USA. Cited in Goldberg, (1989).
Dudukovic, M.P. and Mills P.L. (1986). Contacting and hydrodynamics in trickle-bed reactors. In

Encyclopedia of fluid mechanics, Chereminisoff, Ed., Huston Gulf Publishing, 969-1017.
Dudukovic, M.P., Larachi, F., Mills P.L. (2002). Multiphase catalytic reactors: A perspective on

current knowledge and future trends. Catal. Rev. Sci. & Eng., 44, 123-246.
Flexer, A. (1994) Statistical evaluation of neural network experiments: Minimum requirements and

current practice. Technical report, The Austrian Research Institute for Artificial Intelligence,
Schottengasse 3, A-1010, Vienna, Austria.

Frantz, D. R. (1972). Non-linearities in Genetic Adaptive Search. Doctoral dissertation, University of
Michigan, Dissertation Abstracts International, 33(11), 5240B-5241B. Cited in Goldberg,
(1989).

Friese, T., Ulbig, P., Schultz, S. (1998). Use of Evolutionary Algorithms for the Calculation of Group
Contribution Parameters in order to Predict Thermodynamic Properties. Computers Chem. Eng.
22, 1559-1572.

Fukushima, S., and Kusaka K., (1978) Boundary of hydrodynamic flow region and gas phase mass
transfer coefficient in packed column with concurrent downward flow, J. of Chem. Eng. Japan,
11, 241

Gao, F., Li, M., Wang, F., Wang, B., Yue, P.L. (1999). Genetic Algorithms and Evolutionary
Programming Hybrid Strategy for Structure and Weight Learning for Multi-layer Feed-forward
Neural Networks. Ind. Eng. Chem. Res. 38, 4330-4336.

Garson, G. D. (1991). Interpreting Neural Network Connection Weights. AI Expert, 6(7), 47-51.
Gencay, R., Qi M. (2001). Pricing and hedging derivative securities with neural networks: Bayesian

regularization, early stopping, and bagging, IEEE Transactions on Neural Networks, 12(4)
(2001), 726-734.

Gianetto, A., Baldi, G., Specchia, V., Sicardi, S. (1978). Hydrodynamics and solid-liquid contacting
effectiveness in trickle-bed reactors. AIChE J. 24, 1087.

Goldberg, D.E. (1989). Genetic Algorithms in Search Optimization and Machine Learning. Addison-
Wesley, Reading, MA.

Hashem, S. (1997). Optimal linear combinations of neural networks. Neural Networks, 10, 599.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The University of

Michigan Press. Cited in Goldberg, (1989).
Holub, R. A., Dudukovic, M. P., Ramachandran, P. A. (1992). A phenomenological model for pressure

drop, liquid holdup, and flow regime transition in gas-liquid trickle flow, Chem. Eng. Sci. 47(9-
11), 2343-2348.

Holub, R.A., Dudukovic, M.P., Ramachandran, P.A. (1993) Pressure drop, liquid holdup, and flow
regime transition in trickle flow AIChE Journal, 39(2), 302-321.

http://www.ulaval.ca/

 156

Hornik, K. (1990). Approximation capabilities of multilayer feedforward neural networks, Neural
Networks, 4, 251-257.

Iliuta, I., Larachi, F., Grandjean, B. P. A. (1998). Pressure Drop and Liquid Holdup in Trickle Flow
Reactors: Improved Ergun Constants and Slip Correlations for the Slit Model. Ind. Eng. Chem.
Res. 37, 4542-4550.

Iliuta, I., Larachi, F., Grandjean, B.P.A., Wild, G. (1999a). Gas-liquid Interfacial Mass Transfer in
Trickle-bed Reactors: State-of-art Correlations. Chem. Eng. Sci. 54(23), 5633-5645.

Iliuta, I., Ortiz, A., Larachi, F., Grandjean, B. P. A., Wild, G., (1999b), Hydrodynamics and mass
transfer in trickle-bed reactor: an overview, Chem. Eng. Sci., 54(21), 5329-5337.

Iliuta, I., Larachi, F., Grandjean, B. P. A., Wild, G. (1999c). ECCE2, Montpelier, France.
Iliuta, I., Muntean, O., Iliuta, M. C., Larachi, F. (1999d). Reactoare Multifazice Vol (I-II), Printech

Bucharest.
Jain, A. K., Duin P.W., and Mao. J. (2000). Statistical pattern recognition: A Review. IEEE

Transactions on pattern analysis and machine intelligence, 22(1), 4-37.
Jamialahmadi, M., Zehtaban, MR., Muller-Steinhagen, H., Sarrafi, A., Smith, J.M. (2001). Study of

Bubble Formation under Constant Flow Conditions. Trans. IchemE, 79, 523-532.
Jean, R. and Fan L.S. (1986). A simple correlation for solids holdup in a gas-liquid-solid fluidized bed,

Chem. Eng. Sci. 41(11), 2823-2828.
Jiang P., Luo X., Lin T., Fan L. (1997). High temperature and high pressure three-phase fluidization-

bed expansion phenomena. Powder Technology, 90, 103-113.
John G.H., Kohavi R., Pfleger K. (1994). Irrelevant features and subset selection problem,

Proceedings of the 11th Int. Conf. On Mach. Learning, 121-129.
Kay, H. and Ungar L.H. (1993). Deriving Monotonic Function Envelopes from Observations. Working

Papers from the Seventh International Workshop on Qualitative Reasoning about Physical
Systems, Orcas Island, Washington, 117.

Kay, H., Ungar, L.H. (2000). Estimating monotonic functions and their bounds. AIChE J. 46, 2426.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model

selection, Proceedings of the 15th Int. Joint Conf. On Artif. Intell., 1137-1143.
Krink, T. and Løvbjerg, M. (2002). The LifeCycle model: Combining Particle Swarm Optimization,

Genetic Algorithms and HillClimbers. Proceedings of Parallel Problem Solving from Nature
VII (PPSN-2002), 621.

Larachi, F., Laurent, A., Wild, G. and Midoux, N. (1993). Can. J. Chem. Eng. 71, 319.
Larachi, F., Bensetiti, Z., Grandjean, B. P. A., Wild, G. (1998). Two-phase frictional pressure drop in

flooded-bed reactors: A state-of-the-art correlation. Chem. Eng. Technol., 21(11), 887-893.
Larachi, F., Iliuta, I., Chen, M., Grandjean, B.P.A. (1999). Onset of pulsing in trickle beds: evaluation

of current tools and state-of-the-art correlation, Can. J. Chem. Eng., 77, 751-758.
Larachi, F., Belfares, L., Iliuta, I., Grandjean, B.P.A. (2001). Three-phase Fluidization Macroscopic

Hydrodynamics Revisited. Ind. Eng. Chem. Res. 40, 993-1008.
Lanouette R., Thibault J., Valade J.L. (1999). Process modeling with neural networks using small

experimental datasets, Computers and Chemical Engineering, 23, 1167-1176.
Leva, M. (1953). Tower packings and packed tower design, 2nd Edition, United States Stoneware

Company, Akron.
Li, R., Mukaidono, M., Turksen, I. B. (2002). A fuzzy neural network for pattern classification and

feature extraction. Fuzzy Sets and Systems, 130, 101-108.
Lohl, T., Schultz, C., Engell, S. (1998). Sequencing of Batch Operations for Highly Coupled

Production Process: Genetic Algorithms Versus Mathematical Programming. Computers Chem.
Eng. 22, S579-S585.

 157

Lowe D. and Webb A.R. (1990) "Exploiting knowledge in network optimization: An illustration from
medical prognosis", Network: Computation in Neural Systems, 1, 299-323.

Maćkowiak, J. (1991). Pressure drop in irrigated packed columns. Chem. Eng. Process., 29, 93-105.
Maren, A.J., Harston, C.T. and Pap, R.M. (1990). Neural Computing Applications. Academic Press,

Inc., San Diego.
McLachlan, G.J. (1992) Discriminant Analysis and Statistical Pattern Recognition. Wiley, New York.
McLoone, S., Irwin, G. W. (1997). Fast parallel off-line training of multilayer perceptrons, IEEE

Transactions on Neural Networks, 8(3), 646-653.
Morshed, J., Kaluarachchi, J. (1998) Application of Neural Network and Genetic Algorithm in Flow

and Transport Simulations. Adv. Water Resour. 22, 145-158.
Morshed, J., Powers, S.E. (2000). Regression and Dimensional Analysis for Modeling Two-Phase

Flow. Transport Porous Med. 38, 205-221.
Narendra P.M. and Fukunaga K. (1977). A branch and bound algorithm for feature subset selection.

IEEE Transactions on Computers, C-26(9), 917-922.
Nath R., Rajagopalan B., and Ryker R. (1997). Determining the saliency of input variables in neural

network classifiers. Computers and Operations Research, 24(8), 767-773.
O’Neil, T.J. (1992) Error rates of non-Bayes classification rules and robustness of Fisher’s linear

discriminant function. Biometrika, 79(1):177-184.
Perrone, M. P. (1993) Improving regression estimation: Averaging methods for variance reduction

with extensions to general convex measure optimization. PhD Thesis, Department of Physics,
Brown University.

Piché, S., Larachi, F., Grandjean, B.P.A. (2001a). Flooding Capacity in Packed Towers: Database,
Correlations and Analysis. Ind. Eng. Chem. Res. 40, 476-487.

Piché, S.; Grandjean B.P.A., Iliuta I., Larachi F. (2001b). Interfacial Mass Transfer in Randomly
Packed Towers: A Confident Correlation for Environmental Applications. Environ. Sci.
Technol., 35, 4817-4822.

Piché, S., Larachi F., Grandjean, B.P.A. (2001c). Loading capacity in packed towers-Database,
correlations and analysis. Chem. Eng. Technol., 24, 373-380.

Piché, S., Larachi F., Grandjean, B.P.A. (2001d). Improving the prediction of irrigated pressure drop in
packed absorption towers, CJChE, 79(4), 584.

Piché, S., Larachi F., Grandjean, B.P.A. (2001e), Improved liquid hold-up correlation for randomly
packed towers, Trans IChemE., 79, 71.

Pollock, G.S., Eldridge, R.B. (2000). Neural Network Modeling of Structured Packing Height
Equivalent to a Theoretical Plate. Ind. Eng. Chem. Res. 39, 1520-1525.

Potter, M.A., De Jong, K.A. (1994). A Cooperative Coevolutionary Approach to Function
Optimization. In Y. Davidor, H.-P. Schwefel, and R. Manner (Eds.), Parallel Problem Solving
from Nature (PPSN III), 249.

Prechelt, L. (1998). Automatic early stopping using cross validation: quantifying the criteria, Neural
Networks, 11(4) 761-767.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1989). Numerical recipes: The art of
scientific computing. Cambridge Univ. Press, Cambridge.

Pudil, P., Ferri, F.J., Novovicova, J., Kittler, J. (1994). Floating Search Methods for Feature Selection
with Nonmonotonic Criterion Functions, Proceedings - International Conference on Pattern
Recognition, 2, 279-283.

Quinlan J.R. (1993) C4.5: Programs for Machine Learning. San Mateo, Calif.: Morgan Kaufmann.
Ramachandran, P. A. and Chaudhari, R. V. (1983). Three-Phase Catalytic Reactors, Gordon and

Breach Science Publisher, USA.

 158

Rey-Fabret, I., Sankar, R., Duret, E., Heintze, E., Henriot, V. (2001). Neural Network Tools for
Improving Tacite Hydrodynamic Simulation of Multiphase Flow Behavior in Pipelines. Oil &
Gas Science and Technology-Revue de l’Institut Français du Pétrole, 56, 471-478.

Rumelhart, D.E., Hinton, G. and Williams, R. (1986). Learning internal representation by error
propagation, Parallel Distributed Processing, 1, MIT Press, 318-364.

Sato, Y., T. Hirose, F. Takahashi, Toda, M. and Hashiguchi, Y. (1973). Flow pattern and pulsation
properties of concurrent gas-liquid downflow in packed beds. J. Chem. Eng. Japan, 6, 313-319.

Sai, P. S. T. and Varma, Y. B. G., (1988), Can. J. Chem. Eng. 66, 353.
Schaffer J. D., Whitley D. and Eshelman, L. J. (1992) Combinations of genetic algorithms and neural

networks: A survey of the state of the art. In L. D. Whitley and J. D. Schaffer, editors,
COGANN-92: International Workshop on Combinations of Genetic Algorithms and Neural
Networks, 1.

Sebban M., Nock R. (2002). A hybrid filter/wrapper approach of feature selection using information
theory, Pattern Recognition, 35, 835-846.

Shannon, C. E. and Weaver, W. (1949). The mathematical Theory of communication. University of
Illinois Press, Urbana.

Siedlecki, W. and Sklansky, J. (1988). On automatic feature selection. International Journal of Pattern
Recognition and Artificial Intelligence, 2(2), 197-220.

Sill, J. (1998). Monotonic networks. Adv. Neural Inf. Process., 10, 661.
Sill, J. and Abu-Mostafa, Y. S. (1997). Monotonicity Hints. Advances in Neural Information

Processing Systems, 9, 634-640.
Silvey, F. C. and Keller, G. J. (1966). Chem. Eng. Progr. 62(1), 68.
Soung, W. Y. (1978). Bed Expansion in three-phase fluidization, Ind. Eng. Chem. Process Des. Dev.

17(33).
Sridhar, D.V., Bartlett, E.B. and Seagrave, R.C. (1998). Information theoretic subset selection for

neural network models. Computers Chem. Engng, 22(4-5), 613-626.
Stearns, S.D. (1976). On selecting features for pattern classifiers. In Third Int. Conf. On Pattern

recognition, 71-75, Colorado, CA.
Steppe, J.M. (1994). Feature and model selection in feedforward neural networks, PhD Dissertation at

Air Force Institute of Technology, Ohio.
Tarca, L. A., Grandjean, B. P. A., Larachi, F. (2002). Integrated genetic algorithm - artificial neural

network strategy for modeling important multiphase-flow characteristics, Industrial and
Engineering Chemistry Research, 41(10), 2543-2551.

Tarca, L. A., Grandjean, B. P. A., Larachi, F. (2003a). Reinforcing the phenomenological consistency
in artificial neural network modeling of multiphase reactors, Chemical Engineering and
Processing, 42, (8-9), 653-662.

Tarca, L. A., Grandjean, B. P. A., Larachi, F. (2003b). Artificial Neural Network Meta Models To
Enhance the Prediction and Consistency of Multiphase Reactor Correlations, Industrial and
Engineering Chemistry Research, 42(8), 1707-1712.

Tarca, L. A., Grandjean, B. P. A., Larachi, F. (2003c). Feature selection for multiphase reactors data
classification. (Chemical Engineering Science, submitted).

Tarca, L. A., Grandjean, B. P. A., Larachi, F. (2004a). Embedding monotonicity and concavity
information in the training of multiphase flow neural network correlations by means of genetic
algorithms, Computers and Chemical Engineering, in press.

Tarca, L. A., Grandjean, B. P. A., Larachi, F. (2004b). Designing supervised classifiers for multiphase
flow data classification. Chemical Engineering Science, Accepted.

 159

Tetko, I.V., Villa A.E.P. (1997). An enhancement of generalization ability in cascade correlation
algorithm by avoidance of overfitting/overtraining problem. Neural Processing Letters, 6(1-2)
43-50.

Thibault, J. and Grandjean, B.P.A. (1990). A neural network methodology for heat transfer data
analysis. Int. J. Heat Mass Transf., 34, 2036-2070.

Turpin, J. L., Huntington, R. L. (1967). AIChE J. 13, 1196.
Turpin, J.L., Huntington R.L. (1967). Prediction of pressure drop two-phase, two component

concurrent flow in packed beds, AIChE J., 13, 1196-1202.
Ueda, N. (2000). Optimal linear combination of neural networks for improving classification

performance. IEEE Trans. Pattern Analysis & Machine Intelligence, 22, 207.
Viennet, R., Fonteix, C. and Marc, I. (1995). New Multicriteria Optimization Method Based on the

Use of a Diploid Genetic Algorithm: Example of an Industrial Problem. Lecture Notes in
Computer Science Artificial Evolution, Alliot, J.-M., Lutton, E., Ronald, E., Schoenauer, M.,
Snyers, D. (Eds) Springer, 1063, 120-127.

Wang, R., Mao Z. S., and Chen J. Y. (1994). A study of trickle-to-pulse flow transition in trickle-bed
reactors (TBR), Chem. Eng. Commun. 127, 109-124.

Wang, S. (1996). Learning monotonic-concave interval concepts using the back-propagation neural
networks. Computational Intelligence, 12, 260.

Webb, A., (2002) Statistical Pattern Recognition, 2nd edition, John Wiley and Sons Ltd.
Whaley, A.K., Bode, C.A., Ghosh, J.G., Eldridge, R.B. (1999). HETP and Pressure Drop Prediction

for Structured Packing Distillation Columns Using a Neural Network. Ind. Eng. Chem. Res.,
38, 1736-1739.

Whitley, D. (1989). The GENITOR Algorithm and Selective Pressure: Why Rank-Based Allocation of
Reproductive Trials is Best. In Proc. 3th International Conf. on Genetic Algorithms. 116, D.
Schaffer, ed., Morgan Kaufmann.

Whitley, D. (1995). Genetic Algorithms and Neural Networks. Genetic Algorithms in Engineering and
Computer Science. G. Winter, J. Periaux, M. Galan and P. Cuesta, eds. 203-216, John Wiley.

Whitley, D., Dominic, S. and Das, R. (1991). Genetic reinforcement learning with multilayer neural
networks. In Belew, R. K., and Booker, L. B., eds, Proceedings of the Fourth International
Conference on Genetic Algorithms, 562, Morgan Kaufmann.

Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5, 241.
Yang, H., Fang, B.S., Reuss, M. (1999). kLa Correlation Established on the Basis of a Neural Network

Model. Can. J. Chem. Eng., 77, 838-843.
Zamankhan, P., Malinen, P., Lepomaki, H. (1997). Application of Neural Networks to Mass Transfer

Predictions in a Fast Fluidized Bed of Fine Solids. AIChE J. 43, 1684-1690.
Zhou, J. (1998). Using genetic algorithms and artificial neural networks for multisource geospatial

data modeling and classification, PhD Dissertation University of Connecticut.

160

Appendix 1
 Pseudo algorithm for PCE computation of a trained ANN

1. indexPoint=0; (counts the points around which the model fulfills all the gradient conditions

eqs. 1-5)

2. For each point pk of the training data set, k = (1..NT), pk = {uG,uL,ρG,µL,aT,ε ,φ,Z,DC,ρL,σL,µG}:

• indexVar=0. (counts how many among eqs. 1-5 will be satisfied around point k)

• For each testing variable vj ∈{UG,UL,ρG,µL,aT}, i.e., each j, j=1..5:

o Calculate the maximum increment ∆ which, when added to or subtracted from

pk,j, still yields all the numbers N1 to Nm in the validity ranges. (determine a

validity range for the variable j)

o Calculate N1 to Nm for pk, pk,j
+∆ , pk,j

-∆ (the inputs of the ANN in three points)

o If y(calc)(pk,j
-∆) ≤ y(calc)(pk) ≤ y(calc)(pk,j

+∆) (ANN model presents monotonically

increasing trend with respect to vj)

� indexVar=indexVar+1 (ANN model has passed the test for the variable

vj in point pk)

• If indexVar=5 (ANN model is phenomenologically consistent in the vicinity of point pk)

o indexPoint= idenxPoint+1

3. Return the phenomenology consistence error PCE as (1-indexPoint/NT)*100.

 161

Appendix 2

Proof that monotonic neural networks with respect to dimensional variable vs, may not be

guaranteed if the network’s inputs are functions of the variables vs.

For illustration, let us assume that the liquid holdup εl is a function of two dimensionless numbers

constituting the neural model inputs:

LT

LL

a
uNx
µ

ρ
⋅
⋅

== 11 and
g
auNx

L

TLL

⋅
⋅⋅

==
ρ

µ 2

22 , i.e., liquid Reynolds and liquid Stokes numbers,

respectively.

Let us assume that the network function f(w,x) exhibits decreasing non-strict monotonicity with respect

to variable vS=ρL: 0≤
∂
∂

L

f
ρ

.

Computing the neural network function in this particular case gives:

+

+⋅

⋅
⋅⋅

+⋅
⋅
⋅

= ++

=
∑ 1,1,2

2

,1
1

),(JjIj
L

TLL
j

LT

LL
J

j
j www

g
au

w
a

u
wwxf

ρ
µ

µ
ρ

σσ

and

⋅⋅

+

+

+
⋅=

∂
∂

+
=

+∑ LJ

J

j
jI

LLT

jTLLjLL
j

L

uww
ga

waugwu
wDf

1
1

,1
,2

32
,1

2

)(
ρµ
µρ

σσ
ρ

() (gawagww
ga

waugwu
Dw LTL

J

j
jTLjLjI

LLT

jTLLjLL
j

2

1
,2

32
,1

2
,1

,2
32

,1
2

/)(ρµµρ
ρµ
µρ

σ

−⋅

+

+
⋅∑

=
+)

The sign of this expression is a function of the data point x where it is evaluated (the properties of the

liquid phase and bed); and it may be judged on factors other than weight signs.

 162

Appendix 3
The user interface for the MONMLP software developed in the JAVA language to carry out the

training of monotonic ANNs with genetic algorithms. This software may be downloaded from

http://www.gch.ulaval.ca/∼grandjean.

Main window of MONMLP, plotting the evolution of the AARE of the model in time. The generation,

the composite criterion, and the penalty terms for monotonicity and concavity are also displayed.

http://www.gch.ulaval.ca/grandjea

 163

The Session Settings window, where the user chooses the data set, network architecture, and
monotonicity and concavity expected in the data, as well as some tuning parameters of the GA
optimizer.

164

Appendix 4
The (l,r)-search algorithm, or its particular cases (1,0)-search (or SFS) and (0,1)-search (or SBS), as

described by Pudil et. al (1994, and adapted for the current work notations.

Input:
Xp={Xp,i | i=1,…, p} //the set of all features//
Output:
Xs,d={Xs,i | i=1,…, d, Xs,i ∈ Xp } , d=0,1,…, p; //the selected subset of size d//
Initialization:
if l>r then d:=0; Xs,d =φ ; go to Step 1
 else d:=p; Xs,d = Xp ; go to Step 2
Termination:
 Stop when d equals the number of features required
Step 1 (Inclusion)
Repeat l times
 //the most significant feature with respect to X)(maxarg: ,

,

XJX ds
X dsp

+=
−∈

+ X
XX

s,d //

 ; k:=k+1; +
+ += Xdsds ,1, : XX

Step 2 (Exclusion)
repeat r times
 //the least significant feature in X)(maxarg: ,

,

XJX ds
X ds

−=
∈

− X
X

s,d //

 ; k:=k-1 −
− −= Xdsds ,1, : XX

go to step 1

	1. Neural network dimensionless correlations for continuous multiphase reactors characteristics
	1.1 Bibliographical review
	1.1.1 Existing ANN dimensionless correlations
	1.1.2 Study target problematic and current procedures

	1.2 Genetic algorithm-based procedure to develop dimensionless ANN correlations matching phenomenological prior knowledge
	1.2.1 Methodology description
	1.2.1.1 GA Encoding solutions
	1.2.1.2 Multi-objective criterion and fitness function
	1.2.1.3 Building the generations

	1.2.2 Methodology validation on liquid hold-up modeling
	1.2.2.1 Brief overview of the liquid hold-up database
	1.2.2.2 Evaluation of the PPC term and choice of ?, ?, ? multipliers
	1.2.2.3 GA optimization through generations
	1.2.2.4 Results and discussion

	1.2.3 Reinforcing the match of prior knowledge: Application to pressure drop modeling
	1.2.3.1 Database and phenomenological consistency
	1.2.3.2 New method for assessing phenomenological consistency of ANN models
	1.2.3.3 Finding ANNs with low PCE value to model pressure drop
	1.2.3.4 An improved correlation for pressure drop prediction
	1.2.3.5 Discussion

	1.3 ANN meta-models to enhance prediction and phenomenological consistency
	1.3.1 Introduction to ANN combination schemes
	1.3.2 Base-models and meta-model
	1.3.3 Results and discussion

	1.4 Conclusions
	1.5 Notation

	2. Neural Network Dimensional Correlations for Continuous Multiphase Reactors Characteristics
	2.1 Bibliographical review and problematic
	2.2 Monotonic networks
	2.3 Reformulation of neural network training problem with monotonicity and concavity constraints
	2.4 Genetic algorithm - genetic hill climber optimizer
	2.4.1 Reproduction (Selection)
	2.4.2 Recombination (Crossover)
	2.4.3 Mutation
	2.4.4 Benchmarking the GA-GHC optimizer

	2.5 Methodology validation on liquid holdup modeling
	2. 6 Conclusion
	2.7 Notation

	3. Data classification in multiphase reactors
	3.1 Feature selection methods for multiphase reactors data classification
	3.1.1 Bibliographical review
	3.1.2 Study objective and organization
	3.1.3 Relevance assessment
	3.1.3.1 Mutual information
	3.1.3.2 1-NN classifier accuracy rate
	3.1.3.3 Garson’s saliency index

	3.1.4 Feature selection methods
	3.1.5 Problems and datasets description
	3.1.5.1 Synthetic problem
	3.1.5.2 Anderson’s iris data
	3.1.5.3 Three-class flow regimes classification in trickle beds
	3.1.5.4 Two-class bed expansion/contraction in three phase fluidized beds

	3.1.6 Results
	3.1.6.1 Synthetic problem
	3.1.6.2 Anderson’s iris data
	3.1.6.3 Three-class flow regimes classification in trickle beds
	3.1.6.4 Two-class bed expansion/contraction in three phase fluidized beds

	3.1.7. Conclusions

	3.2 Data classification: application to flow regime classification in trickle beds
	3.2.1 Bibliographical review and problematic
	3.2.2 Description of flow regime database
	3.2.3 Supervised classification, classifiers, and performance evaluation
	3.2.3.1 Supervised classification
	3.2.3.2 Classifiers
	
	
	C) Nearest class mean

	3.2.3.3 Performance evaluation
	3.2.3.3.1 Misclassification rate
	3.2.3.3.2 Loss value using class connectivity information

	3.2.4 Results
	3.2.4.1 Results with common classifiers
	
	Classifier

	3.2.4.2 Knowledge augmented MLP classifiers
	
	Classifier

	3.2.5 Conclusions

	3.3 Notation

