Erratum

Chemical Engineering Science, vol. 64, 2009, 4399-4413

CFD simulation of bubble column flows: Investigations on turbulence models in RANS approach
Cédric Laborde-Boutet, Faiçal Larachi, Nicolas Dromard, Olivier Delsart, Daniel Schweich

\[a \] Department of Chemical Engineering - Laval University, Québec, Canada G1V 0A6, \[b \] TOTAL - Research Center of Gonfreville, Refining & Process, F-76700 Harfleur, France, \[c \] LGPC - CNRS, ESCPE, 43 Bd. du 11 Novembre, BP 2077, 69616 Villeurbanne, France

The color code of the figures captions follow:

FIGURE CAPTIONS

Fig. 1. Radial profiles of the liquid axial velocity in the case of the Dispersed Standard \(k-\varepsilon \) model for grid \#1, using 1st order Upwind (•), 2nd order Upwind (•) and 3rd order MUSCL schemes (†). Comparison with CARPT data (•) given by Chen (2004).

Fig. 2. Radial profiles of the gas holdup in the case of the Dispersed Standard \(k-\varepsilon \) model for grid \#1, using 1st order Upwind (•), 2nd order Upwind (•) and 3rd order MUSCL schemes (†). Comparison with CT data (•) given by Chen (2004).

Fig. 3. Radial profiles of the liquid axial velocity in the case of the Dispersed RNG \(k-\varepsilon \) model for grid \#1 (•), grid \#2 (•), grid \#3 (•), grid \#4 (•), grid \#5 (•), grid \#6 (•) and grid \#7 (•).

Fig. 4. Radial profiles of the gas holdup in the case of the Dispersed RNG \(k-\varepsilon \) model for grid \#1 (•), grid \#2 (•), grid \#3 (•), grid \#4 (•), grid \#5 (•), grid \#6 (•) and grid \#7 (•).
Fig. 5: Radial profiles of the liquid axial velocity in the case of the Standard k-ε model for the Dispersed (♦), Dispersed + BIT (♦), and Per-phase (♦) options. Comparison with CARPT data (♦) given by Chen (2004).

Fig. 6. Radial profiles of the gas holdup in the case of the Standard k-ε model for the Dispersed (♦), Dispersed + BIT (♦), and Per-phase (♦) options. Comparison with CT data (♦) given by Chen (2004).

Fig. 7. Radial profiles of the liquid axial velocity in the case of the Realizable k-ε model for the Dispersed (♦), Dispersed + BIT (♦), and Per-phase (♦) options. Comparison with CARPT data (♦) given by Chen (2004).

Fig. 8. Radial profiles of the gas holdup in the case of the Realizable k-ε model for the Dispersed (♦), Dispersed + BIT (♦), and Per-phase (♦) options. Comparison with CT data (♦) given by Chen (2004).

Fig. 9. Radial profiles of the liquid axial velocity in the case of the RNG k-ε model for the Dispersed (♦), Dispersed + BIT (♦), and Per-phase (♦) options. Comparison with CARPT data (♦) given by Chen (2004).

Fig. 10. Radial profiles of the gas holdup in the case of the RNG k-ε model for the Dispersed (♦), Dispersed + BIT (♦), and Per-phase (♦) options. Comparison with CT data (♦) given by Chen (2004).

Fig. 11. Radial profiles of instantaneous, circum- and axially-averaged turbulent kinetic energy for the Standard k-ε model Dispersed (♦), Standard k-ε model Per-phase (♦), Realizable k-ε model Dispersed (♦), Realizable k-ε model Per-phase (♦), RNG k-ε model Dispersed (♦), RNG k-ε model Per-phase (♦).

Fig. 12. Radial profiles of instantaneous, circum- and axially-averaged turbulent dissipation rate for the Standard k-ε model Dispersed (♦), Standard k-ε model Per-phase
(•), Realizable k-ε model Dispersed (•), Realizable k-ε model Per-phase (•), RNG k-ε model Dispersed (•), RNG k-ε model Per-phase (•).